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ABSTRACT 
 
In this work we present the rule of molecular 
polarizability in analyzing the dielectric behavior of 
liquid using the concept of macroscopic and 
submicroscopic polarization. The influence of 
complex susceptibility and polarizability of the 
dielectric nature of liquid with reference to a 
spherical specimen was generalized with non-
vanishing dipole-dipole coupling. The variation of 
complex permittivity as a function of frequency 
relating relaxation time and polarization 
characteristics were analyzed with the graphs 
showing the parameters that yield good insights 
into the implication of the polarizability in the study 
of dielectric measurements of polar liquids. 
 

(Keywords: polarization, relaxation time, dielectric, 
susceptibility, dipole moment, field) 

 
 
INTRODUCTION 
 
Dielectric polarization can be electronic, ionic, or 
orientational in nature if the gross feature such as 
interfaces and structural irregularities are ignored. 
The first and second of these denoted by 

i  are caused by induced dipoles which 
give rise to dispersions within the ultra-violet and 
infra-red regions of the electromagnetic spectrum 
respectively.  

 and  cP P

 
The third term is denoted by pP  and is caused by 
permanent dipoles and gives rise to dispersion 
within the region of low frequencies up to 
frequencies close to infra-red within the 
frequencies at which dispersion caused by 

permanent dipoles occurs. For electronic and 
those materials in which it exists, ionic polarization 
mechanisms are both fully operative (i.e. they 
have their low-frequency or static values) giving 
rise to completely real polarization components 

 and . They have effect on specimen 
capacitance which is not within the scope of this 
paper. It is only the orientational polarization that 
is being considered. As a result, there is no need 
for the subscript 

esP isP

P , which will not be used. The 
addition of the subscripts to any of the denoted 
symbols means the low-frequency or static value. 
 
In this article, we present a simple model involving 
the orientational polarization in relation to applied 

 field in a spherical specimen of liquid to study 
the effect of polarizability in analyzing the 
dielectric characteristics of liquid. 

dc

 
 
MACROSCOPIC AND SUBMICROSCOPIC 
POLARIZATION CONCEPTS 
 
The steady-state orientational polarization  is 
generally related to an applied  field 

P
dc E  

through the relationship : 
 

0P xEε=   (1) 
 
(Grant et al., 1982) where 0ε  is the permittivity of 
free space and  is the orientational electric 
susceptibility of the material.  

x

 
Considering E  as a phasor representing an 
applied field of angular frequency ω , the 
orientational polarization is found not to be in 
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phase with E  in the frequency range where 
dispersion ca ed by permanent dipoles occurs 
and is therefore complex, and written as P

us )
. The 

related susceptibility x)  is also complex nd is 
given as:     
 

 a

0P xε= E
) )

    (2) 
 

he complex polarizability of the entities giving T
rise to P

)
 is denoted as α)  and hence the 

orientatio l polarizations is given as:  
    
P N E

na

ηα=
) ))

    (3) 
 

 being the nu sity of molecule each N mber of den

having a permanent dipole moment µ  and Eη

)
 is 

the field acting on the molecules.  
 
The field was considered to be the same in each 
case (i.e., the local field or internal field). It is the 
sum of the applied field E  and the field acting on 
the molecule caused by the dipole of all the other 
molecules denoted as Eµ . This is written as: 
  
E E Eη µ= +     (4) 
 

he two fields are out of phase with each other T
(Calderwood, et al., 2007). The electronic and 
ionic polarizabilities arise from spring-like 
mechanism while the orientational polarizability 
does not. In polar liquids, the molecules exhibiting 
such nature of polarizability have a permanent 
dipole moment µ  invariant with variation of field 
for all realistic field magnitudes.  
 
The Langevin theory of magnetic dipoles 
(Langevin, 1905) is applicable to the electric 
dipoles. The problem involved in ordering effect of 
the field energy and the disordering influence of 
thermal energy is such that each molecule with a 
permanent dipole moment µ  makes a 
contribution to the polarization proportional to the 
field. However, Langevin failed to consider dipole-
dipole interaction (i.e., he neglected Eµ ) and 
hence the expression he obtained for po zation 
cannot be used without modification when such 
an interaction is significant. However, the 
expression for 

lari

sα  derivable from his analysis, 

2

3KT
µ

 still holds, where K  is Boltmann’s constant 

and T  is the absolute temperature.  
 
P
)

can be expressed in terms of the macroscopic 
quantity x)  by relationship using  Equation (2) and 
in term of the submicroscopic quantity α)  by the 
relationship using Equation (3). The analysis of 
dielectric  behavior are usually carried out in terms 
of electric susceptibility or permittivity, but (Scaife, 
1963) clearly pointed out that the analysis in terms 
of polarizability especially with more than one 
orientational polarization mechanism present has 
some significant advantage as it can be observed. 
When characteristics are made more evident with 
elaborate understanding since molecular 
polarizability is a factor that determines them. 
 
 
COMPLEX SUSCEPTIBILITY AND 
POLARIZABILITY 
 
As observed by Scaife (1963), long-range dipole-
dipole coupling vanishes in a dielectric hence his 
analysis of dielectric behavior in terms of 
polarizability was referred to in carrying out a 
research with reference to a spherical specimen. 
The shape of the specimen is generalized with 
non vanishing dipole-dipole coupling in this work. 
The result, as observed by Scaife, are found to be 
similar. 
 
For orientational polarization, if we eliminate P

)
 in 

Equation (2) and (3) we obtain: 
     

( )
0E x

E N
η ε

α
=

) )

)     (5) 

 
Derivations of ( )E f Eη =

)
 can be seen in detail 

in books written by Bottcher (1973) and Scaife 
(1998). However, because of the complexity and 
some restrictions on their applicability, for 
example to molecular shape, we employed the 
Lorentz technique which is one of the best-earliest 
known techniques for this type of problem 
(Lorentz, 1952).  
 
This technique involves the process of obtaining 
an expression for sEη  by calculation of the 

field sEµ  caused in a spherical virtual cavity by the 
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bound polarization charges on linear field E , 
taken to be unperturbed by the presence of the 
virtual cavity.  
 
The field sEµ  is in the same direction as E  and 
is given by: 
 

3
s

s
n

PEµ ε
=     (6) 

 
(Lorentz, 1952). 
 
The above Equation (6) which expresses sEµ  is 

in absence of the contribution made by the dipole 
within the spherical virtual cavity following 
Lorentz, we shall take the local field sEη  to be 

given by: 
 

( )03s
PsE Eη ε

= +    (7) 

 
In the case of an applied field, Equation (7) may 
be generalized to give: 
 

( )03
PE Eη ε

= +
)

)
   (8) 

 
Substituting Equation (8) into Equation (3) for P

)
, 

we obtain: 
 

0

1
1 3

E
E N
η

α ε
=

−

)

)    (9) 

 
and substituting in Equation (9) that of Equation 
(5), we have: 
 

0 1
1 1 3N x

εα
⎛ ⎞

= ⎜ ⎟+⎝ ⎠

)
)    (10) 

 
At low frequency, Equation (10) becomes: 
 

0 1
1 1 3s

sN x
εα

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

)
)    (11) 

 
and combining Equations (10) and (11), we obtain 
       

01 3
3s s s

x
x x x

α
α

+
=

+

)

)    (12) 

 
Generally, the relationship between α)  and x)  is 
given by Equation (12) and with the knowledge of 
frequency dependence of x) , the value of the 
frequency relation of α)  will also be known.  
 
For a dielectric material having a susceptibility 
with a single relaxation time xτ , we have: 
 

1
1s x

x
x iωτ
=

+

)
    (13) 

 

substituting this expression for 
s

x
x

)
 into Equation 

(12), we obtain: 
      

3

3

1
1

s

s s x

xx
x iα ωτ
+

=
+ +

)
   (14) 

 
When the numerator and denominator of the 

above expression are divided by 1
3
sx⎛ ⎞+⎜

⎝ ⎠
⎟ , and a 

polarizability time constant ατ  is given such that: 
 

1 3
x

sxα
ττ =
+

    (15) 

 
Equation (14) becomes: 
 

1
1s i α

α
α ωτ

=
+

)
    (16) 

 
However, one expects that as a field  is 
applied to the liquid containing low concentration 
of polar molecules in non-polar solvent in which 

, the polarization  builds up with time 
to give the relation: 

dc dE

0Eµ → P

 
( )1sP P t αε τ= − −    (17) 

 
Thus, if we ignore thermal fluctuations, in this 
case, the time constant ατ  is a measure of the 
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rate at which a degree of polar molecular order is 
built up after  field was applied to it. dc
 
To achieve this, the experimental data relating to 
dielectric relaxation in liquid solutions as 
published by Bucher and Barthel has not been 
defined (Buchner, et al., 2001). This in conjunction 
with Equations (15) and (16) would provide a 
useful and enough source of information for a 
detailed study of this concept. From Equation (2) 
one sees that the polarizability depends on the 
local field acting on the material dipoles, which 
depends on the polarization of the material and so 
on its susceptibility. 
 
If we now denote the relaxation processes by 
subscripts 1 and 2, the former being the low 
frequency process, and the latter, the high 
frequency process, then:    
 

2  x xk 1xτ τ=     (18) 
 
where xk  is a constant such that . In 
the usual case where the strength of the higher 
frequency dispersion is less than that of the lower, 

0 1xk< <

 

2 1s x sx xλ=     (19) 
 
where xλ  is a constant such that  0 1xλ< <  
we now write: 
 

1 1
1

1
2x x x= +     (20) 

 
and putting 1x xcωτ = , 
 

( )
1 1

22

  
1 1

s x s

x x x

1x xx
c k c

λ
= +

+ +
  (21) 

 
Similarly,  
 

(1 2 1 1 )s s s s xx x x x λ= + = +   (22) 
 
The relationship between  can be 
obtained from Equation (15) as: 

 and xkα k

  

1

1

3
3

s

x x s

k x
k x
α

λ
+

=
+

    (23) 

While the relationship between  and xαλ λ  can be 
derived form Equation (11) and it is given by: 
 

1

1

3
3

s

x x s

x
x

αλ
λ λ

+
=

+
    (24) 

 
From equations (23) and (24), it follows that: 
 

x

x

k kα

αλ λ
=     (25) 

 
 
 
RESULT AND DISCUSSION 
 
This result as obtained in Equation (15) agreed 
with the previously result derived by Scaife for a 
spherical specimen. This explained how ατ , the 
time constant, exhibited by very dilute solutions of 
polar molecules in an non-polar solvent for which 
dilute solutions , related to the 
concentration-dependent parameters of time 
constant 

0sx →

xτ  and static susceptibility sx .  
 
It is evident that Equation (16) has the same form 
as Equation (13), and it follows that for a material 
exhibiting a single relaxation time as analyzed by 
Cole and Cole (1941) varies with the angular 
frequency ω  and the case of the corresponding 
susceptibility relation as in Equations (13) and 
(14) indicate that xατ ≤ ) .  
 
The reason for this difference in the time constant 
governing x)  and α)  is that x)  is related to the 
applied field E  through the relationship of 
Equation (2) while α)  is related to the local field 
Eη  through the relationship Equation (2). The 
applied field is the actual field experienced by the 
dipole. Hence it seen that α)  is more directly 
related to the field-related dynamics of the polar 
molecules of the liquid than x) . 
 
The values of sx  for a liquid consisting of a non-
polar solvent in which some polar molecules have 
been incorporated as a solute. A high 
concentration means that sx  is high and hence 
the dipole moment per unit volume is high and so 
high is the specimen polarization .  P

The Pacific Journal of Science and Technology               –192– 
http://www.akamaiuniversity.us/PJST.htm                                           Volume 9.  Number 1.  May-June 2008 (Spring) 



It follows from Equation (5) that the field Eµ  at 
each polar molecule produced by all the other 
polar molecules is high, so that the local field Eη  

has a large component due to Eη  in addition to 

the field due to the applied field E  so 0
x

ατ
τ

→  if 

the concentration of the solute is low, then as 

0,  E Eµ η→ → E  and so 1
x

ατ
τ

→ . This 

dependence of 
x

ατ
τ

 on the value of sx  is 

observed from Equation (15). 
 
It is evident that while ατ  is basic characteristic of 
the material dependent on the behavior of the 
dipole in applied field , xE τ  is determined partly 

by their behavior in the field Eµ  resulting from the 
influence of the electric field of the dipoles on 
each other. Thus xτ  depends on the polarization 
characteristic of the material of the liquid which 
depend in turn on the concentration of the solute 
molecules in the non-polar solvent. The quantities 

 and x sxτ  can be conventionally measured 

directly and ατ  is the limiting value of ατ  for 
dilute solutions of the molecules in a non-polar 
solvent.  
 
From Equation 23, we observe that in order to 
obtain the value of kα  from the knowledge of , 
it is important to have a pre-knowledge of the 
values of 

xk

1 and x sxλ  considering that polar liquids 
often exhibit two or more relaxation mechanisms, 
each of these mechanisms is assumed to have its 
dispersion strength. The reasons for the second 
dispersion were explained by Smyth (1955) and 
Bötcher, et al. (1978).  
 
Figure 1 shows the polarizability α in relation to 
the susceptibility χ . Arbitrarily, the value of χ  

was denoted as 1sχ . The polarizability α  was 

denoted as 2s nα′ . The value of kχ  was different 
for each of the χ  graphs. From the graphs, there 
is evidence of the magnification of high-frequency 
relaxation. The variation of 2s nα  with 1sχ  explains 

how high-frequency relaxation behave for three 
values namely, 0.25,  0.1,χλ =  and 0.01. 
 

 
Figure 1: Graph of the Computed Variation of the 

Static Polarizability at Higher Frequency 
Relaxation with the Variation of the Susceptibility 

at given Ratio of the Strength of the Higher 
Frequency to Lower Frequency Dispersion. 

 
 
Figure 2 presents the relation between χ′′  and 

χ′  for a chosen value of kχ  having a frequency 
related variable. This graphs behavior in the same 
manner as Figure 3 which result from evaluation 
of the equations (23) and (24) each being for a 
chosen value of kχ  and each having cχ  as the 
frequency related value.  
 
Graph (a) is for 0.1kχ = . This curve lies very 
close to the horizontal axis.  Curve (b) is for 

0.01kχ = , where it is seen that the curve f  
moved slightly from the horizontal followed by 
curves (c)  0.03153kχ =  and curve (d) for  

0.001kχ = . All of these curves were plotted for 

critical value of 0.25χλ = . 
 

Conclusion 

The analysis showed the conditions to obtain 
polarization and susceptibility plots and that in 
view of the frequency analysis, α  i.e. the 
polarizability is more important and useful than 
χ .  
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Figure 2: Graph of nχ′′  against nχ′  for the 
Dielectric Exhibiting Two Relaxation Times, when 

nχ′′  (Higher Frequency) is 0.25 ( nχ′ ) (Lower 
Frequency) for the Range of Values of kχ . 

 
 

 
 

Figure 3: Graph of the χ′′  against χ ′  for the 
Dielectric Exhibiting Two Relaxation Times at 
Higher and Lower Frequencies Respectively: 

 to 1000. 1cχ =

 
 
This is so because α magnifies the scale at high 
frequency and that the polarizability of the polar 
molecules provides the basic mechanism which 
brings about the polarization factor of the material. 

Another important factor, apart from the applied 
field, is the time constant ατ  which determines 
the measure of the rate at which a polar molecular 
order is built up after the field application ignoring 
thermal fluctuations. While ατ  is a basic 
characteristic of the material dependent on the 
behavior of the dipoles, in their controllable 
applied field, χτ  is determined by partly their 
behavior in a controlled field and partly by their 
behavior in the uncontrollable field resulting from 
the influence of the electric field of the dipoles on 
each other. Therefore χτ  depends on the 
polarization of the specimen which depends, in 
turn, on the concentration of the solute molecules 
when they are subjected to a known and 
controllable applied field distinct from the effects 
ascribed to the internal field created by other polar 
molecules plays a vital role in addition to the 
applied field. 
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