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ABSTRACT 
 
Comparisons were made between seven of the 
many procedures used to determine variance 
homogeneity. The seven tests that have been 
chosen are the Bartlett's test, the Levene's test 
(mean), the Levene's test (median), the Levene's 
test (trimmed mean), the O’Brien test, the 
Cochran test, and the Fligner's test. Data were 
simulated to compare the seven procedures using 
different distributions (Normal, Beta, and Uniform), 
sample sizes (5, 10, 50, and 100), equal samples 
(n_1=n_2=...=n_k), and five (5) levels (i.e., k = 5). 
The power of the test and type l error rate were 
used to compare the selected procedures at a 
significant level of 0.05. The findings 
demonstrated that the Fligner technique is 
superior to all other procedures when the dataset 
is normally distributed, whereas the Bartlett 
procedure is superior regardless of sample size 
when the dataset is not normally distributed. 
 
(Keywords: homogeneity, type 1 error rate, power of the 

test, robust, normal, non-normal) 
 
 
INTRODUCTION 
 
Choosing whether sample differences in central 
tendency reflect real differences in parent 
populations is a crucial topic in applied research. 
The most effective method for examining this 
phenomenon's hypotheses is the analysis of 
variance (ANOVA) and students t test, provided 
that the assumptions of normality, homogeneity of 
variance, and independent of errors are met. Any 
assumption that proves false may reduce the 
test's usefulness and result in faulty or incorrect 
conclusions (Cochran, 1947; Bodhisuwan, 1991).  

Homogeneity of variance is a condition in which 
the variances of the observations within each 
group are equal (the absence of which is known 
as heteroscedasticity). Therefore, it is crucial for 
researchers to verify this assumption before 
doing an analysis of variance (ANOVA) and t test 
to ensure that the homogeneity of group 
variances assumptions are valid. 
 
There is a large body of statistical literature that 
addresses the numerous methods that have 
been proposed for determining the homogeneity 
of variances. Conover et al. (1981) provide an 
extensive study on tests for homogeneity of 
variances. To assess the robustness of tests at 
nominal significance levels, many tests have 
been investigated and simulated. The F test (two 
samples), Bartlett's (1937), and Levene's (1960) 
tests are the ones that have drawn the greatest 
attention. It is well known that the normality 
assumption has a significant impact on the F test 
(two samples) (Markowski and Markowski 1990). 
According to Conover et al. (1981) and Lim and 
Loh (1996), Bartlett's test is incredibly weak 
against non-normality. Conover et al. (1981) and 
Lim and Loh (1996) both employed the kurtosis 
correction for Bartlett's test that Layard (1973) 
recommended. The modified Bartlett's test shows 
considerable improvement, but it is still not very 
reliable.   
 
The homogeneity of variance assumption in an 
ANOVA process states that treatment variances 
are equal. This is: 
   

 
 
where k represents the number of study groups 
that were compared. According to Game et al 
(1979), small deviations from the assumption of 
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equal variances may not have a significant impact 
on the outcomes of an ANOVA, but researchers 
may be concerned about significant departures 
from the assumption of homogeneity of variance. 
As a result, a critical step in ANOVA analysis is 
constantly evaluating the homogeneity of 
variance. The assumption of homogeneity of 
variance should therefore be tested using a 
variety of statistical techniques that are advised in 
the literature. In order to verify the ANOVA 
assumptions, this study will concentrate on the 
following statistics: Bartlett's test, Levene's test 
(mean, median, and trimmed mean), O’Brien test, 
Cochran test, and Fligner's test. 
 
 
Bartlett’s Test 
 
A pooled estimate of variance (across all groups) 
is compared to the sum of the logarithms of the 
variances of the individual groups in Bartlett's test 
of the null hypothesis of equality of group 
variances. The test statistic can be found in: 
 

 
      

  

 

 
 
To evaluate the significance of ,the value of 

 (that is chi – squared =  where: 
  

 
 
can be likened to the  degree of freedom 
Chi-square distribution. ( . Other 
comparable tests can be employed in those 
circumstances because Bartlett's test is known to 
be sensitive to non-normality. 
 
 
 

O’Brien Test 
 
O'Brien (1979, 1981) Just like Levene's test, 
O'Brien's test of homogeneity of group 
differences is performed on a transformation of 
group data using ANOVA. To perform this test, 
we transform the following data  where  
represents the ith element of the  group: 
 

 
Where 

 
 
That is the sum of the square deviation from the 

group mean and is the number of the 
elements in the  group. But if all the 
experimental groups have the same sample size, 
the above formula can be simplified as: 
 

 
 
 
Cochran’s C Test Statistic 
 
For example, in a linear regression model, the C 
test has been employed as an alternative to 
Bartlett's, Levene's, and Brown-Forsythe's tests 
to assess homoscedasticity (literally, same 
variance). This Cochran's C test should not be 
confused with the Cochran's Q test, which is 
used to analyze two-way randomized block 
designs with several treatments in an 
experimental design. We would anticipate that 
since the Cochran's C test is derived from the F-
test, it would be sensitive to outliers. The highest 
variance in the data set and the total variance 
have a simple estimating equation that goes like 
this: 
 

 
 
where N is the number of sample groups 
included in the data set, and  is the biggest 
standard deviation in the data series j within the 
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data set.   is also the standard deviation of the 
data series with . By taking into 
account variables like N (number of 
groups/subjects), n (number of replicates in each 
group), α (level of significance desired), and a  
value that can be obtained from the F distribution 
table or derived from computer software for the F 
function, the Cochran's upper critical value  is 
obtained as follows: 
 

 
 
 
Levene Test  
 
A one-way analysis of variance on the absolute 
deviations of observations from their group 
medians is essentially what this test is. The test 
statistic for this test is, hence: 
 

 
 
Where  can have one of the following three 
definitions: 
 
a.     Where  is the 
mean of the  subgroup. 
 
b.     Where  is the 
median of the  subgroup 
 
c.     Where  is the 
10% trimmed mean of the  subgroup 
 

 are the group means of the  and  is the 
overall mean of the . 
 
Levene's test's robustness and power are 
determined by the three options for determining 

. When we talk about robustness, we imply the 
test's capacity to avoid misidentifying unequal 
variances when the underlying data are not 
normally distributed, and the variables are equal. 
The test's power is its capacity to identify unequal 
variances when they exist. Additionally, it also 
takes advantage of the fact that ANOVA 

procedure is fairly robust against nonnormality. If 
 , this test rejects the 

hypothesis that the  variances are equal (at a 
significance level of  ). 
 
The Levene test has been shown to be a robust 
and powerful test in many simulation studies 
(Brown and Forsythe, 1974; Conover, Johnson 
and Johnson, 1981; Lim and Loh, 1996; 
Shoemaker, 2003) particularly for asymmetric or 
skewed distributions. 
 
 
Modified Fligner-Killeen Test (F-K:med ) 
 
Conover, et al. (1981) suggested modifying the 
Fligner-Killeen test (Fligner and Killeen, 1976) by 
using the ranks of  , , where  is 
the median of the  group, and assigning 
increasing scores of: 
 

 
 
based on those ranks, where  is the cdf of 
a standard normal distribution. The chi-squared 
test is created based on the statistics from these 
results. 
 

 
 
and 
 

 
 
Where is the mean score for the sample.  
 

 is the overall mean score, that is 
 

 
The distribution of statistic  has an asymptotic 
value of where  is the total number of 
variances compared. If , then this 
test rejects the null hypothesis that  variances 
are identical (at a significance level of ). 
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Simulation Study 
 
To compare the type I error rate and power of the 
tests of the chosen procedures, namely: Bartlett's 
test, Levene's test (mean, median, and trimmed 
mean), O’Brien test, Cochran test, and Fligner's 
test, the stimulation research will be carried out 
using the R program. The simulations are 
performed when: 
 
• there is equal variance 

   
 

• the   is true 
 

• the data are  normal and non-normal 
 

• sample size are the same 
  . 
 

• significant level  are 0.05. 
 

All of these were repeated 1,000 times, and the 
outcomes were shown in tabular formats. 
 
 
Table 1: Four Factors used for Evaluation Criteria 

in Stimulation. 

 
Distributions Significant 

Level 
Nature of Sample Levels 

Normal   5 
Beta   5 
Gamma   5 
Uniform   5 

 
 
Data Generation 
 
The dataset used for the procedure under 
consideration included the normal, beta, gamma, 
and uniform distributions. It was replicated one 
thousand times (1000) using the R package 
when the sample sizes were equal  (n_1=n_2= 
...〖=n〗_k ), and the significant level was set at 
0.05 when there was no statistically significant 
difference in the variance. 
  
 
RESULTS 
 
All the procedures considered for the comparison 
are Bartlett’s test, Levene’s test (mean, median 
and trimmed mean), O’Brien test, Cochran test 
and Fligner’s test, respectively. 

 
 
 

Table 2: Simulation Result on Type l Error Rate when Sample Size are Equal (Normal Distribution). 
 

Sample  Bartllet Fligner L.mean L.med L.trim O’Brien Cochran 
Level = 5       rnorm(n1,3,8),  rnorm(n2,3,8),   rnorm(n3,3,8) , rnorm(n3,3,8), rnorm(n3,3,8) 

5 0.035 0.000 0.094 0.003 0.045 0.034 0.041 
10 0.047 0.024 0.068 0.031 0.054 0.055 0.049 
50 0.054 0.038 0.047 0.039 0.047 0.044 0.049 
100 0.050 0.041 0.049 0.041 0.046 0.045 0.048 

 
 

Table 3: Simulation Result on Power of the Test when Sample Size are Equal (Normal Distribution). 
 

Sample  Bartllet Fligner L.mean L.med L.trim O’Brien Cochran 
Level = 5      rnorm(n1,3,8),  rnorm(n2,3,8),   rnorm(n3,3,8) , rnorm(n3,3,8) , rnorm(n3,3,8) 

5 0.953 0.914 0.974 0.908 0.953 0.947 0.824 
10 0.953 0.949 0.964 0.943 0.955 0.959 0.804 
50 0.959 0.955 0.957 0.950 0.956 0.953 0.785 
100 0.946 0.936 0.934 0.933 0.936 0.934 0.769 
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Table 4: Simulation Result on Type l Error Rate when Sample Size are Equal (Gamma Distribution). 

 
Sample  Bartllet Fligner L.mean L.med L.trim O’Brien Cochran 

Level = 5      rgamma(n, 1.5, 0.5), rgamma(n, 1.5, 0.5), rgamma(n, 1.5, 0.5), rgamma(n, 1.5, 0.5),  
rgamma(n, 1.5, 0.5) 

5 0.223 0.000 0.216 0.013 0.098 0.054 0.221 
10 0.347 0.059 0.191 0.039 0.070 0.058 0.286 
50 0.485 0.089 0.186 0.049 0.074 0.052 0.388 
100 0.480 0.081 0.154 0.038 0.053 0.041 0.364 

 
 
 

Table 5: Simulation Result on Power of the Test when Sample Size are Equal (Gamma Distribution). 
 

Sample  Bartllet Fligner L.mean L.med L.trim O’Brien Cochran 
Level = 5      rgamma(n, 1.5, 0.5), rgamma(n, 1.5, 0.5), rgamma(n, 1.5, 0.5), rgamma(n, 1.5, 0.5), 

rgamma(n, 1.5, 0.5) 
5 0.980 0.910 0.989 0.936 0.969 0.961 0.910 
10 0.989 0.966 0.987 0.955 0.968 0.962 0.951 
50 0.993 0.965 0.979 0.955 0.958 0.957 0.962 
100 0.992 0.964 0.974 0.944 0.953 0.945 0.954 

 
 
 

Table 6: Simulation Result on Type l Error Rate when Sample Size are Equal (Beta Distribution). 
 

Sample  Bartllet Fligner L.mean L.med L.trim O’Brien Cochran 
Level = 5     rbeta(n, 0.7, 1.5), rbeta(n, 0.7, 1.5), rbeta(n, 0.7, 1.5), rbeta(n, 0.7, 1.5), rbeta(n, 0.7, 1.5) 

5 0.060 0.000 0.181 0.003 0.091 0.020 0.021 
10 0.040 0.041 0.144 0.045 0.076 0.075 0.016 
50 0.017 0.078 0.136 0.065 0.086 0.070 0.013 
100 0.007 0.083 0.124 0.042 0.072 0.046 0.008 

 
 
 

Table 7: Simulation Result on Power of the Test when Sample Size are Equal (Beta Distribution). 
 

Sample  Bartllet Fligner L.mean L.med L.trim O’Brien Cochran 
Level = 5     rbeta(n, 0.7, 1.5), rbeta(n, 0.7, 1.5), rbeta(n, 0.7, 1.5), rbeta(n, 0.7, 1.5), rbeta(n, 0.7, 1.5) 

5 0.937 0.892 0.972 0.880 0.950 0.927 0.775 
10 0.913 0.930 0.975 0.923 0.957 0.948 0.703 
50 0.901 0.945 0.970 0.940 0.958 0.944 0.653 
100 0.911 0.961 0.971 0.947 0.958 0.953 0.649 

 
 
 

Table 8: Simulation Result on Type l Error Rate when Sample Size are Equal (Uniform Distribution). 
 

Sample  Bartllet Fligner L.mean L.med L.trim O’Brien Cochran 
Level = 5    runif(n,3,8),  runif(n,3,8),   runif(n,3,8) ,  runif(n,3,8),  runif( (n,3,8) 

5 0.012 0.000 0.089 0.000 0.040 0.015 0.004 
10 0.003 0.011 0.065 0.019 0.042 0.050 0.000 
50 0.000 0.035 0.057 0.030 0.046 0.040 0.001 
100 0.000 0.038 0.052 0.038 0.049 0.044 0.000 
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Table 9: Simulation Result on Power of the Test when Sample Size are Equal (Uniform Distribution). 

 
Sample  Bartllet Fligner L.mean L.med L.trim O’Brien Cochran 

Level = 5    runif(n,3,8),  runif(n,3,8),   runif(n,3,8) , runif(n,3,8),  runif( (n,3,8) 
5 0.847 0.854 0.952 0.836 0.932 0.906 0.606 
10 0.837 0.942 0.961 0.923 0.956 0.942 0.516 
50 0.797 0.943 0.959 0.948 0.961 0.953 0.441 
100 0.753 0.947 0.944 0.933 0.937 0.934 0.397 

 
 
 
 
DISCUSSION OF RESULTS  
 
When the sample size is minimal (say, 5) in all the 
groups in Table 2, 4, and 6, the Fligner test 
outperformed all other procedures in terms of type 
I error rate for all the datasets evaluated (Normal, 
Gamma, beta and uniform distribution). However, 
when the dataset is normally distributed, the 
Fligner test outperforms every other method in 
terms of type I error rate for all sample sizes (5, 
10, 50, and100). 
 
In terms of type I error rate, using a normal 
distribution from Table 2, the Levene test (mean) 
fared poorly when the sample size was small and 
competed well with other procedures as the 
sample size increased. However, compared to the 
other tests from Tables 4, 5, 6, and 7, the Levene 
test (mean) has the highest type I error rate and 
power when the distribution is not normally 
distributed (beta, gamma, and uniform). 
 
From Tables 4, 5, 6, and 7, it can be shown that 
the Cochran test and the Bartlett test compete 
with one another in terms of type I error rate when 
the dataset is not normal (i.e., uniform and beta 
distribution). However, the Bartlett test performs 
better than the Cochran test in terms of test 
power. 
 
With the exception of the Cochran test, all 
procedures considered outperformed one another 
in terms of test power when the dataset was 
normal and not normally distributed. 
 
 
CONCLUSION 
 
In conclusion, the Fligner test is the best 
procedure when the data is normally distributed 
for both small and large sample sizes, and the 
Bartlett test is the procedure to employ when the 
data is not normally distributed. 
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