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ABSTRACT 
 
In this study, nonlinear model with variance 
homogeneity is compared with nonlinear model 
with variance heterogeneity (power-of-the-mean-
variance model) using residual standard error and 
F-statistic to see which one gives parsimonious 
description of the datasets. Newton-Raphson 
Algorithm was used to estimate the parameters of 
the models. The two models are fitted to Carbon 
Monoxide (CO) pollution data measured in part 
per million (PPM). Based on residual standard 
error and F-statistic, the power-of-the-mean-
variance model performed better than nonlinear 
model with variance homogeneity. 
 

(Keywords: variance, homogeneity, heterogeneity, 
parameters, Newton-Raphson algorithm) 

 
 
INTRODUCTION 
 
Ratkowsky (1990) provides a very helpful 
catalogue of nonlinear mean functions that can be 
used in practice to model datasets that are 
nonlinear in nature. Among the functional forms 
available for modelling nonlinear relationships can 
be found in Bates and Watts (1998), Carroll and 
Ruppert (1988), Drapper and Smith (1996), Huet, 
et al. (2004), Ripley and Venables (2005), Seber 
and Wild (1988), and Ritz and Strreibig (2008). 
 
Ratkowsky (1990) points out that none of these 
parametrizations dominate others with regard to 
computational and asymptotic properties. This 
means that other parametrizations of the same 
function may be used in some circumstances. 
Consider any nonlinear mean function  
 

(say)  ,ii xfy  , the error term  i  

 
will always be introduced into the mean function 
be either multiplicatively, additively or otherwise. 

The essence of the error term  i is to make 

the model a statistical model and also to cater 

for the distortion in the response iy  away 

from expected value  ,ixf  caused by 

various unknown sources of variation and the 
error would be varies from measurement to 
measurement. 
 

Typically, the error term  i  are assumed to 

be normally distributed (with mean 0  and 

variance 
2 ) i.e., assumptions underlying 

nonlinear regression model. In this paper we 
proposed an approach for dealing with model 
violation related to the measurement error: 
normally distributed with heterogeneous 
variance. 
 
Carroll and Ruppert (1988; pp51-61) pointed 
out that variance heterogeneity has little 

influence on the parameter estimates  , but if 

ignored it may result in severely misleading 
confidence and prediction intervals. However, 
one way of taking into account variance 
heterogeneity is by explicitly modelling it. 
Although, variance modelling will only cater for 
variance heterogeneity; but it is not a remedy 
for non-normal errors. Meanwhile, both non-
normal error distributions and variance 
heterogeneity can be adequately tackled by 
transformation approach. 
 
 
MATERIALS AND METHODS 
 
The relationship between response and 
predictor variables can be formulated as: 
 

   1;xfy   
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Where f (.) would be non linear in one or more of 

the p  parameters p 1 . The parameters have 

to be estimated from the data. However, the 
number of parameters occurring in f should be 
less than the number of observations (i.e. np ). 

The relationship in Equation 1 is for the ideal 

situation, the predictor values ni xx ,,  and the 

response  ni yy ,,  are observed without error. 

In reality, measurement error will distort the 
picture such that none of pairs  

     nn yxyxy ,,,,,,x 2211    will fit Equation 1, 

exactly. 
 
 
Nonlinear Model with Variance Homogeneity 
  
Here, we assumed that the error term enters the 
model additively; therefore, the complete 
specification of the nonlinear regression model is 
given as: 
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In matrix form, it can be expressed as: 
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Estimating the Parameters of Nonlinear 
System with Variance Homogeneity 
 
Nonlinear least squares and maximum likelihood 
are the most common methods of parameter 
estimation in nonlinear models. Both methods 
involve finding the value that minimizes or 
maximizes a function. In this paper, we employed 
the method of nonlinear least squares. 
 
Consider the Equation 2, the problem is to 

estimate the unknown vector  , a natural solution 

is to choose the value of   that minimizes the 

distances between the values of  ;ixf  and 

observation iy ; this is referred as the least 

squares criterion or the residual sums of 

squares (RSS) with respect to . This is 

defined as: 
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The partial derivative of  RSS  with respect 

to θ is given as: 
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Where ,1,,1  pa  , when the p partial 

derivatives are each set to 0, we obtain 
thereafter the p-normal equations after some 
simplification; compactly, it can be written as; 
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There is no explicit solution to Equation (5). It 
is mathematically intractable. It poses serious 
computational task, the estimates can be 
obtained using numerical minimization. 
However, a variety of reliable algorithms are 
now available to overcome these difficulties. 
We therefore employed Gauss-Newton 
Algorithm. 
 
 
Gauss- Newton Algorithm for Fitting 
Nonlinear Models 
 
The Gauss-Newton Algorithm requires the 
calculation of first derivatives. If the residuals 
are small, the Gauss-Newton algorithm will 
converge more rapidly. Suppose the model to 
be fitted is: 
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The model is that  ;ixf  is assumed to be 

nonlinear model with mean zero and unknown 

variance 
2 . The sum of squared departures is: 

                                                

      
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These estimates by definition minimize S (θ), 
therefore, the least squares estimate of θ is 
obtained by differentiating equation (3) with 
respect to θ and equate to zero and solve for: 
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Gauss-Newton algorithm starts by expanding the 

deterministic component  ;ixf  of Equation (2) 

using Taylor first-order approximation  ;ixf , 

we have: 
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Substitute Equation (9) into Equation (1): 
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On- rearranging, the Equation 10 becomes: 
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Let  ;xff
o

i   then: 
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Equation 12 can be interpreted as follow;  for 

the 
thj parameters and 

thi  observations, we 

have: 
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It can be written as: 
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Let: 
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Consider the n-observations:; 
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In matrix form; we have; 
 

 14000

ii Zfy  

 
 

The least squares of 
0  can therefore be 

written as: 
 

+ 
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We have minimized the sum of squares, however, 
the residual sum of squares can be written as: 
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Recalling that: 
0
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As yielded by equation (16), the latest estimate of 

j  is: 
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Recalling from equation (16): 
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Thus: 

rr   1
 

 
The iterative process continues until convergence 
is achieved, convergence is achieved at r+1 
iteration. 
 
 
Termination Condition of Iteration 
 
The condition for convergence is given by: 
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Where δ is some pre-determined small amount 

[e.g. 000001.0 or  6100.1  ]. At the end of 

 thr 1 iteration procedure, the estimates of S(θ) 

is defined by: 
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Also,  S can be checked to see if a 

reduction in its value has actually been 
attained. 
 
 
Estimate of Error Term Variance 
 

An estimate of the error term variance
2 can 

be obtained for nonlinear regression model in 
the same form for linear regression model: 
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MSE is not an unbiased estimator of
2 , but 

the bias is small when the sample size is 
large. 
 
 
Nonlinear Model with Variance 
Heterogeneity 
 
We have considered model with additive error 
term, where we assumed that all errors had 

the same variances  ivar . This implying that 

the errors were identically distributed. Here, 
we want to consider the mean Variance-
modelling in an attempt to deal with model 
violation related to the measurement error-
normally distributed with heterogeneous 
variance, also for data characterized by 
various heterogeneity, a situation where the 
variance changes as the predictor values 
changes. 
 
The model is specified as: 

 

 

      
 19

;var;0

;

2













iii

iii

xfE

xfy

 
However, for an increasing variance, the way 
to model the dependence of the variance on 
the a mean is through power-of-the-mean-
variance-model: 
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The variance of each observation depends on 

the corresponding mean value  ;ixf through 

power function with exponent 2 . Variance 

homogeneneity corresponding to 0 in which 

case (20) becomes (2). This means that the 
model with variance homogeneity is a sub-model 
of the power-of-the-mean-model (variance 
homogeneity’s model) and, consequently, a 
statistical test F-test can be used to assess 
whether or not the power-of-mean-variance-model 
provides a significant improved fit compared with 
model that assumes variance homogeneity. 

Estimating the Parameters of Nonlinear 
System with Variance Heterogeneity 
 

There are different methods of carrying out 
the parametric modelling of the variance 
function. In this paper, the method of 
maximum likelihood is choosing because it is 
widely known.  Consider the nonlinear 
regression model: 
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The likelihood function is given as: 
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The normal equations are; 
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There is no closed form solution; the normal equations are mathematically intractable.   
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Let: 
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Consider n-observations: 
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In matrix form: 
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In matrix form: 
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The least square of 
0  can be written as: 
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We have minimized the sum of square  S  
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Estimate of Error Term Variance 
 
An estimate of the error term variance σ 2 is given as; 
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Here   and  are the final parameter estimates, the residuals are the deviations around the fitted 

nonlinear regression function using the final estimated coefficients. 
 
 
 
Maximum Likelihood Estimation 
 
Consider the nonlinear regression model: 
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The likelihood function is given as: 
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For ease of handling, we generally use the logarithm of the likelihood: 
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For a given set of observations nYY ,,1  , the log-

likelihood is a function of the parameters. If p is 

the dimension of   , and q is the dimension of 

 , the model depends on p+q+1 parameters. 

The maximum likelihood estimator 


 ,,, 2
 

maximizes the log-likelihood. The values of 



 ,,, 2
cannot be obtain explicitly; they 

obtained by numerical computation. 
 
 
Using F-Test 
 
To obtain the most parsimonious description of 
the dataset, a statistical test (F-test) is carried out 
between the two models. This is necessary 
because two models are fitted: Model A and 
Model B. Model A is a sub-model or nested model 
of Model B. 
 
The F-test is defined as: 
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Where subscripts A and B refer to model A and 
model B, respectively. 
 
Model A − Model with variance homogeneity (sub 
model of Model B) 
 
Model B− Model with variance heterogeneity 
(Power-of-mean-variance). 
 
 
The main ingredient in Equation 28 is the different 
between RSS quantities for the two models 

considered. A large difference means that the two 

models are quite different, whereas a small 
difference indicates that they provide similar fits to 
the data. Large and small can be assessed and 
quantified by means of a p-value obtained from an 
F-distribution with degrees of 

freedom dfAdfAdfB , . 

 
 
 
 
 

DATA ANALYSIS AND DISCUSSION 
 

Table 1: Summary of Exponential Model with 
Variance Homogeneity. 

 
Parameters Estimate Std. 

Error 
t-

value 
 || tpr   

  4.7893 0.59826 8.006 8.29e-14 

  24.8589 0.8998 27.627 2e-16 

 
  

The Residual Standard Error is 23.57 on 208 
degree of freedom and number of iteration to 
convergence is 4. Achieved convergence 
tolerance is 2.273e-06, while LogLik is -
960.5496. 
 
 
Table 2: Summary of Exponential Model with 

Variance Heterogeneity. 
                         

Parameters Estimate Std. Error t-value  || tpr   

  3.834931 0.3719501 10.31034 0 

  23.301546 0.6610329 35.25020 0 

   
 

The variance parameter 


  = 0.8604619 very 

close to 1, indicating that the variance 
structure resemble that of a gamma 
distribution. The parameter estimates have 
not changed much compared with model fit 
that assumes constant variance.  
 
The residual standard error is 1.126683 on 
208 degree of freedom has also improved as 
against 23.57. Logarithm of the likelihood 
function is evaluated to be -940.5496. 
 
However, comparing models A and B does 
make sense as they are both nested models. 
The log-likelihood ratio test and p-value are 
indicated in the table above. 
 
The fitted Exponential regression curve is 
given by the following expression: 
   
  ˆ 

  301546.23/exp834931.3 ii xY  Yi  

 
 
 
 

http://www.akamaiuniversity.us/PJST.htm


The Pacific Journal of Science and Technology               –66– 
http://www.akamaiuniversity.us/PJST.htm                                                Volume 17.  Number 1.  May 2016 (Spring) 

 
Table 3: The Summary Output of F-Test. 

 
Model df AIC BIC logLik test L.Ratio p-value 

A 3 1927.09 1937.14 -960.31    

B 4 1888.43 1901.822 -940.21 1 vs 2 40.66609 0.0001 

 
 
 
 
CONCLUSION 
 
This study focused on the performance and 
estimation of nonlinear regression models with 
variance homogeneity and heterogeneity (a 
situation where the assumption that the residuals 
are normally distributed with mean 0 and variance 
σ is wrong) using Carbon monoxide dataset. The 
residual standard errors attached to the two 
models in (Tables 1 and 2), the log likelihood ratio 
test and the p-value in (Table 3) indicate that the 

model with different variances is better. 
 

 
SELF-STARTER FUNCTIONS 
 
In this study, we make use of nlrwr and nlme 
packages in R. The following code were used for 
the data analysis. 
 
The constructed self-starter functions for 
exponential model are: 
 
expModelInit <- function(mCall, 
LHS, data) { 
xy <- sortedXyData(mCall[["predictor"]], 
LHS, data) 
mFit <- lm(log(xy[, "y"]) ~ 
xy[, "x"]) 
coefs <- coef(lmFit) 
alpha <- exp(coefs[1]) 
beta <- 1/coefs[2] 
value <- c(beta, alpha) 
names(value) <- mCall[c("beta", 
"alpha")] 
value 
    } 
SSexp <- selfStart(expModel, expModelInit, 
c("beta", "alpha")) 
getInitial(co ~ SSexp(Traffic density,beta, 
alpha), data = mod) 
mod.m1 <- nls(co ~ SSexp(Traffic density, 
beta, alpha), data = mod) 
summary(mod.m1) 
 mod.m2 <- gnls(co ~ SSexp(Traffic.density, 

+ beta,alpha), data = mod, weights = 
varPower()) 
> summary(mod.m2) 
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