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ABSTRACT 
 
In this paper, we develop a mathematical model 
on the transmission dynamics of typhoid fever 
using the concept of differential equation. The 
Next Generational Matrix (NGM) method is used 
to calculate the basic reproduction number 
necessary for the disease control. The findings of 
the study show that if the basic reproduction 
number is less than one, the disease can be 
controlled. Finally, numerical simulations to 
demonstrate our findings and brief discussions 
are provided. 
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INTRODUCTION 
 
Typhoid fever is one of the deadliest diseases in 
Africa, especially where there is a poor sanitation, 
poor standards of personal hygiene, and the 
prevalence of contaminated water (Kariuki, 2004).  
It is endemic in developing countries and remains 
a substantial public health concern despite recent 
progress in water sanitation coverage. Advances 
have been made towards the fight against the 
infection such as treatment with drugs, 
vaccination, and environmental sanitation 
(Moffact, 2014).  
 
Typhoid bacteria are passed in the feces and 
urine of infected indiviuals and people become 
infected after eating food or drinking beverages 
that have been handled by a person who is 
infected, or by drinking water that has been 
contaminated by sewage containing the bacteria. 
Once the bacteria enters the body it travels in the 
human intestines, and then enters the 
bloodstream. The bacteria enter to the blood 

through lymph nodes, gallbladder, spleen, liver, 
etc. Abdominal pain, fever, and general ill feeling 
are the symptoms of this disease. High fever 
(103o F or 39.5 C) or higher and severe diarrhea 
occur as the disease gets worse (Mushayabasa, 
et al., 2014 and Mushayabasa, 2017). 
 
In 2001, it is estimated that the disease caused 
21.6 million illnesses and 216,500 deaths globally 
(WHO, 2004). Modelling the spread of typhoid 
fever and its transmission is an important and 
interesting area for a many computational 
mathematical researchers. The study of 
infectious diseases in the past has mainly 
focused on impacts within the human population 
(Watson and Edmunds, 2015). 
 
In recent years, data indicating that typhoid fever 
is a major cause of mortality among the urban 
and peri-urban population. For instance, several 
community-based studies have emerged from 
South Asia, where the incidence rate seems to 
be high among young children, with rates 
exceeding 500-1000 cases per 100,000 
(Mushayabasa, et al., 2013). 
 
When dealing with large populations, as in the 
case of typhoid fever, compartmental 
mathematical models are used. In the 
deterministic model, individuals in the population 
are assigned to different subgroups, each 
representing a specific stage of the epidemic.  
Mathematical models are used in science and 
engineering to help understand complex systems 
and optimize industrial processes. There are 
numerous examples of the fruitful applications of 
mathematical principles to problems in typhoid 
vaccines and in the recent years, there have 
been increasing interests in applying the 
transmission models (Peter, et al., 2021; Ojo, et 
al., 2022; Ayoade, et. al., 2019; Peter, et. al., 

http://www.akamaiuniversity.us/PJST.htm


The Pacific Journal of Science and Technology               –41– 
https://www.akamai.university/pacific-journal-of-science-and-technology.html                    Volume 23.  Number 1.  May 2022 (Spring) 

2021; Peter, et. al., 2021; Adebisi, 2019; Peter et. 
al., 2020; and Ayoola, et al., 2021). 
 
Various studies including mathematical models of 
the spread of typhoid fever, dynamic models for 
analyzing and predicting process of typhoid fever, 
among others, have been conducted by many 
researchers globally. For instance, according to 
Peter, et al. (2017) constructed mathematical 
model of the type PSITR in which added a 
recovered compartment in which all treated 
individuals recovered but after some time the 
recovered individuals lose immunity and return 
back to a susceptible class.  
 
Several authors have also worked in this area, 
and few among them are Lauria, et al. (2009) and 
Nithiri, et al. (2016). In Lauria, et al. (2009) an 
optimization model for reducing typhoid cases in 
developing countries without increasing public 
spending. In Nithiri et al. (2016), mathematical 
modelling of typhoid fever disease incorporating 
protection against the disease was studied. 
 
Thus, in this work, we test for the existence and 
uniqueness of a solution for the model using 
Lipschitz condition, and compute the basic 
reproduction number necessary for the disease 
control. 
 
 
MODEL FORMULATION 
 
The compartment used in this model consists of 
three classes, namely:  
 

• Susceptible Class S(t): these are individuals 
who are susceptible to the disease or are 
prove to the disease.  
 

• Infected I(t): these are individuals who are 
infected with the disease and are capable of 
transmitting the disease to these in the 
susceptible class.  
 

• Recovered class R(t): these are who have 
recovered from the disease.  

 
Recruitment rate to susceptible class is either by 

immigration or by birth at a rate . Susceptible 

individuals get infected through interaction with 

the infected individuals at a rate  represent 

rate of recovery from infection. In each of the 

classes, individual can die naturally at a rate , 

the disease induced death rate is given as , 

the above illustration can be represented by the 
system of differential-equations given below: 
 

   (1) 

   

  (2) 

 
 

    (3) 

 
 

 
Figure 1: The Model ‘s Flow Diagram. 

 
 

Table 1: Description of Parameters/Variables. 
 

Variable Description 

S(t) Susceptible class at time t 

I(t) Infected individual at time t 

R(t) Recovered individuals at time t 

Parameter Description 

 
Recruitment rate 

 
Force of infection 

 
Natural death rate 

 
Disease induced death rate 

 
Recovered rate 

 
The model assumptions: 
  
1) We assume direct transmission between two 

individuals by showing contaminated food or 
drinks. 
 

2) All parameters used are positive.  
 

3) Susceptible individuals cannot be infected 
simultaneously  

 

 

http://www.akamaiuniversity.us/PJST.htm


The Pacific Journal of Science and Technology               –42– 
https://www.akamai.university/pacific-journal-of-science-and-technology.html                    Volume 23.  Number 1.  May 2022 (Spring) 

Existence and Uniqueness of Solution 
 
Existence and uniqueness theorem is the tool 
which makes it possible for us to conclude that 
there exists only one solution to a first order 
differential equation which satisfies a given initial 
condition. 
 
Theorem 1: Let f(x,y) be a real valued function 
which is continuous on the rectangle R={(x,y); |x-

x0|  a, |y-y0|  b}. Assume f has a partial 

derivative with respect to y and that  is also 

continuous on the rectangle R. Then there exists 

an interval I=  such 

that the initial value problem  has a 

unique solution y(x) defined on the interval .  

 
Note that the number h may be smaller than a. In 
order to understand the main ideas behind this 
theorem, assume the conclusion is true. Then 
if y(x) is a solution to the initial value problem, we 
must have: 
 

 (4) 

 
It is not hard to see that if a function y(x) satisfies 
the equation (called functional equation): 
 

 (5) 

 
on an interval I, then it is solution to the initial 
value problem: 
 

 (6) 

 
 
Lipschitz Condition 
 
The term is used for a bound on the modulus of 
continuity a function. In particular, a function 

 is said to satisfy the Lipschitz 

condition if there is a constant M such that: 
 

  (7) 
 
 

,                                                              

The smallest constant M satisfying Equation (7) 
is called Lipschitz constant. 
 
Theorem 2: Let D represents the region 

, Therefore the solution of model in 

(1) – (3) is unique if we are able to establish that 

 are bounded in D and 

continuous in D for , we have: 

  

  (8) 

 

   (9) 

 

   (10) 

 

For    

     

   (11) 

 

 (12) 

 

   (13) 

 

For  

 

   (14) 

 

   (15) 

 

   (16) 

 
 
These partial derivatives exist, are continuous 
and bounded, and from theorem 2, we conclude 
that the solution of the model is unique and it 
exists. 
 
 
Equilibrium State 
 
An equilibrium of a dynamical system is a value 
of the state variables where the state variables 
do not change. In other words, an equilibrium is a 
solution that does not change with time. This 
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means if the systems start at an equilibrium, the 
state will remain at the equilibrium forever. 
 
In a discrete dynamical system, such as: 
 

   (17) 

 
In function iteration form or:  
 

  (18) 

 
In difference form, one can find the equilibria by 

substituting in the same quantity for  and 

 such as substituting  

 

  or   
 

to determine the value E such that  is an 

equilibrium of the dynamical system. 
 
In a continuous dynamical system, such as:  
 

    (19) 

 

One can find the equilibrium by setting . 

One must then solve the equation: 
 

    (20) 

 

to determine values E such that  is an 

equilibrium of the dynamical system. 
 
 
Disease Free-Equilibrium State 
 
This is the equilibrium state in the absence of 
infection. Recall from Equations (1)- (3): 
 

   (21) 

 

  (22) 

 

   (23) 

 

To calculate the Disease free-equilibrium state, 
we equate the right-hand side of Equations (21) – 
(23) to zero, Also, in the absence of infection, we 
set the infected class to zero. Following the 
above, (21) – (23) reduced to:  
 

    (24) 

 

From (24), S =  ,  also  I = 0 and R = 0. 

 
Therefore, the disease free-equilibrium denoted 

by  is given as:  

 

  (25) 

 
 
Basic Reproduction Number 
 
The basic reproduction number R0 of an infection 
is the expected number of cases directly 
generated by one case in a population where all 
individuals are susceptible to infection 
(Diekmann, et al., 1990). Thus, whether a 
disease persistent or eradicated in the 
population, it depends on the value of the basic 
reproduction number, when the basic 
reproduction number R0 < 1, it means the disease 
is under control, but when the value of the basic 
reproduction number is greater than one, then 
the disease will invade the entire population. 
 
 
Computation of the Basic Reproduction 
Number 
 
The basic reproduction number R0 is obtained by 
using the next generation matrix technique. This 
method was first used by Diekman, et al. (1990) 
and has been by many researchers. The 
procedure is given as follows:  
 
Let Fi(a) represent the appearance of new 
infection, in the class I 
 
Let Vi

+ represent the movement of individuals to 
the class I by other mode of disease 
transmission.  
 
Vi 

– represent movement rate of people out of 
compartment I. 
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The transmission model consists of non-negative 
initial condition together with the system of 
equation given below:  
 

 
 

where  

 
F and V represents n x n matrix defined by: 
 

 
Following the method of Diekman, et al. (1990) 
the product of the matrix FV-1 is called the next 
generation matrix for the model and the basic 
reproduction number R0 is the spectral radius 

 that is, . However, 

the largest eigenvalue represents the next 
generation matrix. 
 
Following the above procedure, we shall calculate 
the basic reproduction number for the model. We 
shall apply the procedure above to get the basic 
reproduction number. It has been mentioned that 
only the infected class are needed in the 
computation of R0. Hence n = 1 that is, the 
number of infected compartments is one from (1)- 
(3). 
 
According to Diekman, et al. (1990) F and V are 
computed by finding the partial derivatives of the 
matrices with respect to infected compartment. 
 

 
 

 
 
F and V are the Jacobian matrix which shall be 
computed at the Disease free-equilibrium such 
that:  
 

 ,  

 

 ,    

   ;  (26) 

 

Substituting the value of S at Disease free-

equilibrium that is,  . Therefore, the 

spectral radius of the matrix which is the 

highest eigenvalue is the basic reproduction 
number R0. 
 

   (27) 

 
 
SIMULATION AND RESULTS 
 
In this section, we present the  simulation and 
results obtained from the compuation of the basic 
reproduction number, which demonstrates the 
findings from the proposed model. This is 
achieved by using the set of parameter values 
given in the Table 1 which are obtained from the 
literature. We also perform numerical simulations 
to describe graphically the long-term impact of 
early treatment on the dynamics of typhoid fever. 
We used the following assumed initial condition 
for the simulation.  S0=10, I0=200, R0=30. 
 

Table  2: Parameters Values for Model. 
 

Parameter Value Source 

 
10 Lauria et al.,(2009) 

 
0.10 Peter, et al.,(20017) 

 
0.142 Mushayabasa, (2014) 

 
0.75 Nthiiri, (2016) 

 
0.01 Mushayabasa, (2014) 

 
Recal from (27) that the basic reproduction 
number which is necessary for the control of the 
disease is given as: 
 

  (28) 

 
We substitute the values of the parameter in 
Table 2 to get the actual value of the basic 
reproduction number necessary for the control of 
the disease: 
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DISCUSSION OF RESULTS 
 
Figure 2 shows the susceptible population against 
time. The population of Infected individual is on 
the increase. Once preventive measures are put 
in place such as sanitation, personal hygiene, 
etc., transmission rates will be low and the 
number of susceptible individuals will increase as 
seen in Figure 2. 

 
Figure 2: Susceptible Population. 

 

 
Figure 3: Infected Population. 

 

 
Figure 3: Recovered Population. 

 

Figure 3 shows Infected population against time. 
We have proved that when the basic 
reproduction number is less than one the disease 
can be controlled. The population of the infected 
individual reduced drastically due to the fact that 
the basic reproduction number is less than one, 
when this happened then we can control the 
spread of the disease. 
 
Figure 4 shows the recovered population against 
time, the population of the recovered class 
increased but the population tends to decrease 
as the 25th week this is as results of incomplete 
treatment. It is recommended that for treatment 
to be effective, it must be completed 
 
 
CONCLUSION 
 
We developed a mathematical model on the 
transmission dynamics of typhoid fever disease. 
The existence and uniqueness theorem using the 
Lipchitz criteria is used to check the validity of the 
model, we proceeded to calculate the disease-
free equilibrium and we compute the basic 
reproduction number. Weather a disease dies out 
or persists in a population, depends on the value 
of the basic reproduction number. The results 
obtained from the basic reproduction number 
shows that the disease can be control if some 
neccesary measures are put in place. It is 
recommended that early treatment should be 
implemented as this will reduced the number of 
infected individuals. 
 
 
REFERENCES 
 
1. Abioye, A.I., M.O. Ibrahim, O.J. Peter, and H.A. 

Ogunseye. 2020. “Optimal Control on a 
Mathematical Model of Malaria”. UPB Scientific 
Bulletin, Series A: Applied Mathematics and 
Physics. 82(3): 178-190. 
 

2. Adebisi, A.F., O.J. Peter., T.A. Ayoola, A.A. 
Ayoade, O.E. Faniyi, and A.B. Ganiyu. 2019..  
“Semi Analytic Method for Solving Infectious 
Disease Model”. Science World Journal. 14(1): 88-
91. 
 

3. Ayoade, A.A., M.O. Ibrahim, O.J. Peter, and S. 
Amadiegwu. 2019.  “On Validation of an 
Epidemiological Model”. Journal of Fundamental 
and Applied Sciences. 11(2): 578-586. 
 

4. Ayoola, T.A., H.O. Edogbanya, O.J. Peter, F.A. 
Oguntolu, K. Oshinubi, and O.M. Lawal. 2021. 
“Mathematical Modelling and Optimal Control 

http://www.akamaiuniversity.us/PJST.htm


The Pacific Journal of Science and Technology               –46– 
https://www.akamai.university/pacific-journal-of-science-and-technology.html                    Volume 23.  Number 1.  May 2022 (Spring) 

Analysis of Typhoid Fever Model”. Journal of 
Mathematical and Computer Science. 11(6): 6666-
6682. 
 

5. Diekmann, O., J.A.P. Heesterbeek, and J.A.J. 
Metz. 1990. “On the Definition and Computation of 
the Basic Reproduction Ratio R0 in Models for 
Infectious Diseases in Heterogeneous 
Populations”. Journal of Mathematical Biology. 28: 
365–382. 
 

6. Kariuki, C. 2004. “Characterization of Multidrug-
Resistant Typhoid Outbreaks in Kenya”. Journal of 
Clinical Microbiology. 42(4): 1477–1482. 
 

7. Lauria, D.T., B. Maskery, C. Poulos, and D. 
Whittington. 2009. “An Optimization Model for 
Reducing Typhoid Cases in Developing Countries 
without Increasing Public Spending”. Vaccine. 
27(10): 1609–1621. 
 

8. Moffact, N. 2014. “Mathematical Model and 
Simulation of the Effects of Carriers on the 
Transmission Dynamics of Typhoid Fever”. 
Transactions on Computer Science Engineering 
and its Applications. 2(3): 14–20. 
 

9. Nthiiri, J.K. 2016. “Mathematical Modelling of 
Typhoid Fever Disease Incorporating Protection 
against Infection”. British Journal of Mathematics 
and Computer Science, 14(1): 1–10. 
 

10. Oguntolu, F.A., G. Bolarin, A.I. Enagi, O.J. Peter, 
and K. Oshinubi. 2021. “Mathematical Model for 
the Control of Lymphatic Filariasis Transmission 
Dynamics”. Communication in Mathematical 
Biology and Neurosciences. 2021: Article ID 17. 
https://doi.org/10.28919/cmbn/5307 
 

11. Ojo, M.M., O.J. Peter, E.D. Goufo, H.S. Panigoro, 
and F.A. Oguntolu. 2022. “Mathematical Model for 
Control of Tuberculosis Epidemiology”. Journal of 
Applied Mathematics and Computing.  
https://doi.org/10.1007/s12190-022-01734-x 
 

12. Peter, O.J., M.O. Ibrahim, O.B. Akinduko, and M. 
Rabiu. 2017. “Mathematical Model for the Control 
of Typhoid Fever. IOSR Journal of Mathematics. 
13(4): 60–66. 
 

13. Peter, O.J., A.I. Abioye, F.A. Oguntolu, T.A. 
Owolabi. O Ajisope, A.G. Zakari, and T.G. Shaba. 
2020. “Modelling and Optimal Control Analysis of 
Lassa Fever Disease”. “Informatics in Medicine 
Unlock”. 20: 100419. 
https://doi.org/10.1016/j.imu.2020.100419 
 

14. Peter, O.J., A.S. Shaikh, M.O. Ibrahim, K.S. Nisar, 
D. Baleanu, I. Khan, and A.I. Abioye. 2021. 
“Analysis and Dynamics of Fractional Order 
Mathematical Model of COVID-19 in Nigeria Using 

Atangana-Baleanu Operator”. Computers, 
Materials and Continua. 66(2): 1823-1848. 
 

15. Peter, O.J., M.M. Ojo, F.A. Oguntolu, and R. 
Viriyapong. 2022. “Mathematical Model of 
Measles Transmission Dynamics Using Real Data 
from Nigeria”. Journal of Difference Equations and 
Applications.  
http://dx.doi.org/10.1080/10236198.2022.2079411 
 

16. Peter, O.J., A. Yusuf, M.M Ojo, S. Kumar, N. 
Kumari, and F.A. Oguntolu. 2022. “A Mathematical 
Model Analysis of Meningitis with Treatment and 
Vaccination in Fractional Derivatives”. 
International Journal of Applied and 
Computational Mathematics. 8: 117. 
https://doi.org/10.1007/s40819-022-01317-1 
 

17. Mushayabasa, S., C.P. Bhunu, and E.T.N. 
Gwasira. 2013. “Assessing the Impact of Drug 
Resistance on the Transmission Dynamics of 
Typhoid Fever”. Computational Biology Journal. 
Article ID303645. doi:10.1155/2013/303645 
 

18. Mushayabasa, S., C.P. Bhunu, and N.A. Mhlanga. 
2014. “Modeling the Transmission Dynamics of 
Typhoid in Malaria Endemic Setting”. International 
Journal of Application and Applied Mathematics. 
9(1): 121–140. 
 

19. Mushayabasa, S. 2012. “A Simple Epidemiological 
Model for Typhoid with Saturated Incidence Rate 
and Treatment Effect”. International Journal of 
Application and Applied Mathematics. 6(6): 688-
695. 
 

20. Watson, C.H. and W.J.A. Edmunds. 2015. 
“Review of Typhoid Fever Transmission Dynamic 
Models and Economic Evaluations of 
Vaccination”. Vaccine. 33: 42–54. 
doi:10.1016/j.vaccine.2015.04.013 
 

21. WHO. 2004. “Background Document: The 
Diagnosis, Treatment and Prevention of  Typhoid 
Fever”. Assessed on 05/07/2017 from 
http://archives.who.int/hq/2003/WHO V%26B 
03.07.pdf 
 

 

SUGGESTED CITATION  
 
Victor, A.A., M.O. Etuk, A.O. Yekeen, O.E. Bello, 
and M.O. Ajisope. 2022. “Mathematical Model for 
the Control of Typhoid Fever with Effects of Early 
Treatment”. Pacific Journal of Science and 
Technology. 23(1): 40-46. 
 

 
 

 

Pacific Journal of Science and Technology 

http://www.akamaiuniversity.us/PJST.htm
https://doi.org/10.28919/cmbn/5307
https://doi.org/10.1007/s12190-022-01734-x
https://doi.org/10.1016/j.imu.2020.100419
http://dx.doi.org/10.1080/10236198.2022.2079411
https://link.springer.com/journal/40819
https://link.springer.com/journal/40819
https://doi.org/10.1007/s40819-022-01317-1
https://www.akamai.university/pacific-journal-of-science-and-technology.html

