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ABSTRACT 
 
This article provides a tutorial exposition of 
maximum likelihood estimation (MLE). MLE is of 
fundamental importance in the theory of inference 
and is a basis of many inferential techniques in 
Statistics, unlike least squares estimation (LSE), 
which is primarily a descriptive tool. In this paper, 
we provide a simple, intuitive explanation of the 
method so that the reader can have a grasp of 
some of the basic principles. We hope the reader 
will apply the method in his or her mathematical 
modeling in area widely available MLE-based 
analyses can be performed on data, thereby 
extracting as much information and insight as 
possible into the underlying mental process under 
investigation. 
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INTRODUCTION 
 
In mathematical modeling, such hypotheses 
about the structure and inner working of the 
behavioral process of interest are stated in terms 
of parametric families of probability distributions 
called models. The goal of modeling is to deduce 
the form of the underlying process by testing the 
viability of such models. Once a model is 
specified with its parameters, and data have been 
collected, one is in a position to evaluate its 
goodness of fit, that is, how well it fits the 
observed data. Goodness of fit is assessed by 
finding parameter values of a model that best fits 
the data a procedure called parameter estimation.  
 
There are two general methods of parameter 
estimation. They are least-squares estimation 
(LSE) and maximum likelihood estimation (MLE). 
The former has been a popular choice of model 

fitting in Statistics and is tied to many familiar 
statistical concepts such as linear regression, 
sum of squares error, proportion variance 

accounted for (i.e.: ), and root mean squared 

deviation. LSE, which is unlike MLE requires no 
or minimal distributional assumptions (non-
parametric), is useful for obtaining a descriptive 
measure for the purpose of summarizing 
observed data, but it has no basis for testing 
hypotheses or constructing confidence intervals. 
 
On the other hand, MLE is not as widely 
recognized among modelers in Statistics, but it is 
a standard approach to parameter estimation and 
inference in statistics. MLE has many optimal 
properties in estimation: sufficiency (complete 
information about the parameter of interest 
contained in its MLE estimator); consistency (true 
parameter value that generated the data 
recovered asymptotically, i.e., for data of 
sufficiently large samples); efficiency (lowest-
possible variance of parameter estimates 
achieved asymptotically); and parameterization 
invariance (same MLE solution obtained 
independent of the parametrization used).  
 
In contrast, no such things can be said about 
LSE. As such, most statisticians would not view 
LSE as a general method for parameter 
estimation, but rather as an approach that is 
primarily used with linear regression models. 
Further, many of the inference methods in 
statistics are developed based on MLE. For 
example, MLE is a prerequisite for the chi-square 
test, the G-square test, Bayesian methods, 
inference with missing data, modeling of random 
effects, and many model selection criteria such as 
the Akaike information criterion (Akaike, 1973) 
and the Bayesian information criteria (Schwarz, 
1978). 
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MODEL SPECIFICATION 
 
The model specifications are presented as 
follows: 
 
Probability Density Function 
 
From a statistical standpoint, the data vector 

is a random sample from an 

unknown population. The goal of data analysis is 
to identify the population that is most likely to 
have generated the sample. In statistics, each 
population is identified by a corresponding 
probability distribution. Associated with each 
probability distribution is a unique value of the 
model’s parameter. As the parameter changes in 
value, different probability distributions are 
generated. Formally, a model is defined as the 
family of probability distributions indexed by the 
model’s parameters. 
 

Let denote the probability density 

function (PDF) that specifies the probability of 

observing data vector  given the parameter . 

Throughout this paper we will use a plain letter for 
a vector (e.g., y) and a letter with a subscript for a 
vector element (e.g., yi). The parameter 

 is a vector defined on a 

multi-dimensional parameter space. If individual 
observations, yi’s, are statistically independent of 
one another, then according to the theory of 
probability, the PDF for the data 

 given the parameter vector w 

can be expressed as a multiplication of PDFs for 
individual observations, 
 

                                       (1) 
 
Likelihood Function 
 
Given a set of parameter values, the 
corresponding PDF will show that some data are 
more probable than other data. 
 
Accordingly, we are faced with an inverse 
problem: Given the observed data and a model of 
interest, find the one PDF, among all the 
probability densities that the model prescribes, 
that is most likely to have produced the data. To 
solve this inverse problem, we define the 
likelihood function by reversing the roles of the 

data vector y and the parameter vector in 

; that is: 

 

                            (2) 
 

Thus,  represents the likelihood of the 

parameter w given the observed data y; and as 
such is a function of w: For the one-parameter 
binomial for example, the likelihood function for 

  and  is given by: 

 

                                                                              

  (3) 
 
There exist an important difference between the 

PDF  and the likelihood function 

As illustrated above, the two functions 

are defined on different axes, and therefore are 
not directly comparable to each other. 
Specifically, the PDF is a function of the data 
given a particular set of parameter values, 
defined on the data scale. On the other hand, the 
likelihood function is a function of the parameter 
given a particular set of observed data, defined 
on the parameter scale.  
 
 
MAXIMUM LIKELIHOOD ESTIMATION 
 
Once data have been collected and the likelihood 
function of a model given the data is determined, 
one is in a position to make statistical inferences 
about the population, that is, the probability 
distribution that underlies the data. Given that 
different parameter values index different 
probability distributions, we are interested in 
finding the parameter value that corresponds to 
the desired probability distribution.  
 
The principle of maximum likelihood estimation 
(MLE), originally developed by R.A. Fisher in the 
1920s, states that the desired probability 
distribution is the one that makes the observed 
data ‘‘most likely,’’ which means that one must 
seek the value of the parameter vector that 

maximizes the likelihood function The 

resulting parameter vector, which is sought by 
searching the multi-dimensional parameter space, 
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is called the MLE estimate, and is denoted by 

  

 
To summarize, maximum likelihood estimation is 
a method to seek the probability distribution that 
makes the observed data most likely. 
 
 
Likelihood Equation 
 
MLE estimates need not exist nor be unique. In 
this section, we show how to compute MLE 
estimates when they exist and are unique. For 
computational convenience, the MLE estimate is 
obtained by maximizing the log-likelihood 

function; . This is because the two 

functions,  and ; are 

monotonically related to each other so the same 
MLE estimate is obtained by maximizing either 
one. Assuming that the log-likelihood function, 

; is differentiable, if  exists, it 

must satisfy the following partial differential 
equation known as the likelihood equation: 
 

, 

 

at  

 
This is because the definition of maximum or 
minimum of a continuous differentiable function 
implies that its first derivatives vanish at such 
points. The likelihood equation represents a 
necessary condition for the existence of an MLE 
estimate. An additional condition must also be 

satisfied to ensure that  is a maximum 

and not a minimum, since the first derivative 
cannot reveal this.  
 
To be a maximum, the shape of the log-likelihood 
function should be convex (it must represent a 

peak, not a valley) in the neighborhood of : 

This can be checked by calculating the second 
derivatives of the log-likelihoods and showing 
whether they are all negative at: 
 

 
 
 
 

Maximum Likelihood Estimation of a Two-
Sided Exponential Probability Distribution 
Function 
 
In this section, we present an application of 
maximum likelihood estimation by using an 
illustrative example, in doing this the exponential 
model and the power model will be use and the 
models are as define as: 
 
Power model: 
 

,       

 

                                               

(4) 
 
 
Exponential model:  
 

  ,      

 

                (5) 
 

 
 

Now, assuming that  are statistically 

independent of one another, the desired log-
likelihood function for the power model is given 
by: 
 

 
 

 

     (6) 
 
 
This quantity is to be maximized with respect to 
the two parameters, w1 and w2. It is worth noting 
that the last three terms of the final expression in 
the above equation, 
 

(i.e., ),  
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do not depend upon the parameter vector, 
thereby do not affecting the MLE results. 
Accordingly, these terms can be ignored, and 
their values are often omitted in the calculation of 
the log-likelihood. Similarly, for the exponential 
model, its log-likelihood function can be obtained 

from above by substituting  exp  

for . 

 
 
Information Matrix 
 
We can obtain a 2×2 square information matrix 
for the two-sided exponential distribution 
presented.  
 

 
 
For our model, all the second derivatives exist. 
Hence we can obtain: 
 

 
 

 
 

 
 
Hence,  
 

                   (7) 
 
In illustrating MLE, we used a data set from 
Murdock (1961). In this experiment subjects were 
presented with a set of words or letters and were 

asked to recall the items after six different 
retention intervals, (t1,…,t6) = (1; 3; 6; 9; 12; 18) in 
seconds and thus, m = 6: The proportion recall at 
each retention interval was calculated based on 
100 independent trials (i.e. n = 100) to yield the 
observed data (y1,…,y6) = (0.94; 0.77; 0.40; 0.26; 
0.24; 0.16); from which the number of correct 
responses, xi, is obtained as 100yi,  i = 1,…, 6: In 
Figure 1, the proportion recall data are shown as 
squares. 
 
The curves in Figure 1 are best fits obtained 
under MLE. Table 1 summarizes the MLE results, 
including fit measures and parameter estimates, 
and also includes the LSE results, for 
comparison.  
 

 
 
Figure 1:  Modeling Forgetting Data. Squares 
represent the data in Murdock (1961). The Thick 
(respectively, thin) are best fits by the power 
(respectively, exponential) models. 

 
 

Table 1: Summary Fits of Murdock (1961) Data for the Power and Exponential Models under the 
Maximum Likelihood Estimation (MLE) Method and the Least Squares Estimation (LSE) Method. 
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The results in Table 1 indicate that under either 
method of estimation, the exponential model fit 
better than the power model. That is, for the 
former, the loglikelihood was larger and the SSE 
smaller than for the latter. The same conclusion 
can be drawn even in terms of r2. Also note the 
appreciable discrepancies in parameter estimate 
between MLE and LSE.  
 
These differences are not unexpected and are 
due to the fact that the proportion data are 
binomially distributed, not normally distributed. 
Further, the constant variance assumption 
required for the equivalence between MLE and 
LSE does not hold for binomial data for which the 

variance depends upon 

proportion correct  

 
 
MLE INTERPRETATION 
 
What does it mean when one model fits the data 
better than does a competitor model? It is 
important not to jump to the conclusion that the 
former model does a better job of capturing the 
underlying process and therefore represents a 
closer approximation to the true model that 
generated the data. A good fit is a necessary, but 
not a sufficient, condition for such a conclusion. A 
superior fit (i.e., higher value of the maximized 
loglikelihood) merely puts the model in a list of 
candidate models for further consideration. This is 
because a model can achieve a superior fit to its 
competitors for reasons that have nothing to do 
with the model’s fidelity to the underlying process. 
For example, it is well established in statistics that 
a complex model with many parameters fits data 
better than a simple model with few parameters, 
even if it is the latter that generated the data. The 
central question is then how one should decide 
among a set of competing models. A short answer 
is that a model should be selected based on its 
generalizability, which is defined as a model’s 
ability to fit current data but also to predict future 
data. 
 
 
CONCLUDING REMARKS 
 
This article provides a tutorial exposition of 
maximum likelihood estimation. MLE is of 
fundamental importance in the theory of inference 
and is a basis of many inferential techniques in 
statistics, unlike LSE, which is primarily a 
descriptive tool. The intended audiences of this 

tutorial are researchers who practice 
mathematical modeling of cognition but are 
unfamiliar with the estimation method. Unlike 
least-squares estimation which is primarily a 
descriptive tool, MLE is a preferred method of 
parameter estimation in statistics and is an 
indispensable tool for many statistical modeling 
techniques, in particular in non-linear modeling 
with non-normal data. 
 
In this paper, we provide a simple, intuitive 
explanation of the method so that the reader can 
have a grasp of some of the basic principles. We 
hope the reader will apply the method in his or 
her mathematical modeling efforts so a plethora 
of widely available MLE-based analyses can be 
performed on data, thereby extracting as much 
information and insight as possible into the 
underlying mental process under investigation. 
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