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ABSTRACT 
 
The Dirichlet distribution is a generalization of   
the Beta distribution. This research deals with the 
estimation of scale parameter for Dirichlet 
distribution with known  shapes. We examined 
three methods to estimate the parameters of 
Dirichlet distribution which are Maximum 
Likelihood Estimator, Method of Moment 
Estimator, and Quasi-Likelihood Estimator. The 
performance of these methods were compared at 
different sample sizes using Bias, Mean Square 
Error, Mean Absolute Error and Variance criteria, 
an extensive simulation study was carried out on 
the basis of  the selected criterion  using statistical 
software packages as well as the application of 
the criterion to real life data, all these were done 
to obtain the most efficient method.  
 
The simulation study and analysis revealed that   
Quasi-Likelihood Estimator performed better in 
terms of bias while Method of Moment Estimator 
is better than the other two methods in terms of 
variance; the Maximum Likelihood Estimation was 
the best estimation method in terms of the Mean 
square Error and Mean Absolute Error; while 
Quasi- Likelihood Estimation method was the best 
estimation method with real life data. 
 
(Keywords: Dirichlet distribution, parameter estimation,  

maximum likelihood estimator, method of moment 
estimator and quasi-likelihood estimator). 

 
 
INTRODUCTION 
 
In Bayesian statistics, the Dirichlet distribution is a 
popular conjugate prior for multinomial 
distribution. The Dirichlet distribution has a 
number of applications in various fields. Samuel 
S. Wilk (1962), gave an example, where he 
applied the Dirichlet distribution in deriving the 
distribution of order statistics.  

Kenneth Lange (1995), also used the Dirichlet 
distribution in biology to demonstrate and to 
compute forensic match probabilities from 
several distinct populations. In addition, Brad N 
(2009), used the Dirichlet distribution to model a 
player`s abilities in Major League Baseball. It is 
shown that the Dirichlet distribution can be used 
to model consumer behavior Gerald et al (1984).  
 
Dirichlet distribution can be extended to various 
fields of study such as biology, astronomy, text 
mining and so on. The Dirichlet distribution (DD) 
is usually employed as a conjugate prior for the 
multinomial modeling and Bayesian analysis of 
complete contingency tables (Agresti, 2002). 
Gupta and Richards (1987, 1991, and 1992) 
extended the DD to the Liouville distribution. 
Fang, Kotz, and Ng (1990) gave an extensive 
exposition of the Liouville family and its 
ramifications.  
 
The problem of estimating the parameters which 
determine a mixture has been the subject of 
diverse studies (Redner and Walker, 1984). 
During the last two decades, the method of 
maximum likelihood (ML) (Bishop, 1995) and 
(Rao, 1987) has become the most common 
approach to this problem. Of the variety of the 
iterative methods which has been subjected as 
an alternative to optimize the parameters of a 
mixture, the one most likely used is the 
expectation maximization (EM). EM was 
originally proposed by Dempster, et al. (1977) for 
estimating the maximum likelihood estimator 
(MLE) of stochastic models. This algorithm gives 
an iterative procedure, and the practical form is 
usually simple and easy to implement .The EM 
algorithm can be viewed as an approximation of 
the Fisher scoring method (Ikeda, 2000).  
 
In this research we showed that the Dirichlet 
distribution can be a very good choice for 
modelling data, MLE was used to estimate the 
parameters of the Dirichlet Mixture Model 
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alongside with EM algorithm. This mixture 
decomposition algorithm incorporates a penalty 
term in the objective function to find the number of 
components required to model the data. This 
algorithm suffers some set back: the need to 
specify the number of components each time, 
which will be determine by selected criterion 
functions such as AIC, BIC, MDL which has been 
in existence  to validate the model and justify the 
more efficient one.  
 
This research centered on studying how the 
different estimators of the unknown parameters of 
a Dirichlet distribution can behave for different 
sample sizes. Here, we are mainly comparing the 
Maximum Likelihood Estimator, Method of 
Moment Estimator and Quasi-Likelihood Estimator 
with respect to efficiency, bias, mean absolute 
error and variance using extensive simulation 
techniques as well as application of the estimation 
methods to real life data set. 
 
 
LITERATURE REVIEW 
 
The Dirichlet model describes patterns of repeat 
purchases of brands within a product category. It 
models simultaneously the counts of the number 
of purchases of each brand over a period of time, 
so that it describes purchase frequency and brand 
choice at the same time. It assumes that 
consumers have an experience of the product 
category, so that they are not influenced by 
previous purchase and marketing strategies; for 
this reason, consumer characteristics and 
marketing-mix instruments are not included in the 
model. As the market is assumed to be stationary, 
these effects are already incorporated in each 
brand market share which influences other brand 
performance indexes calculated by the model.  
 
The market is also assumed to be unsegmented. 
The theory and development of the model is fully 
described in Ehrenberg (1972). Goodhardt, 
Ehrenberg and Chatfield (1984), summarize the 
situation by stating that the Dirichlet model makes 
explicit that there are simple, general and rather 
precise regularities in a substantial area of human 
behavior where this has not always been 
expected. In setting the context for this particular 
approach to the modeling of consumer behavior 
viz. the largely explanatory models of consumer 
behavior, Ehrenberg (1988) claims that it 
describes how consumers behave, rather than 
why, and takes into account only those factors 
necessary for an adequate description. 

Many aspects of buyer behaviors can be 
predicted simply from the penetration and the 
average purchase frequency of the item, and 
even these two variables are interrelated 
(Ehrenberg, 1988, pg. ii). The Dirichlet model 
integrates the reported regularities and predicts 
many aggregate brand performance measures. 
These measures are the distribution of purchases 
for a brand, the proportion of a brand's buyers 
buying that brand only, and the proportion of 
people purchasing a brand, given that they have 
previously purchased that brand. When these 
predictions are compared with observed figures, 
Ehrenberg claims that it is not unreasonable to 
expect to obtain correlations in the order of 0.9 
and sometimes much higher, (Ehrenberg, 1975, 
Ehrenberg and Bound, 1993).  
 
Applications and theory can be used to provide 
norms for examining brand performance, or 
diagnostic information for the "health" of a brand. 
In addition, the Dirichlet model can provide 
interpretative norms for evaluating situations 
where some trend in sales has occurred, say 
after a promotion or advertising scheme. 
Ehrenberg also claims that the Dirichlet model 
provides valuable insights into the nature and 
implications of brand-loyalty (e.g., Ehrenberg and 
Uncles, 1995; Ehrenberg and Uncles, 1999).   
 
The use of likelihood theory to estimate the 
parameters of the Dirichlet model, providing an 
alternative to the standard procedure based on 
the method of zeros and ones and on marginal 
moments (Rungie, 2003b). In order to write the 
likelihood function, the data should be in the form 
of joint frequencies, like those contained in a 
contingency table with n-rows, representing the 
number of consumers, and g columns, for the 
number of brands.  
 
Alternatively, the iterative procedures based on 
the approach that computations are easy to use, 
and require only aggregated data as input, as 
access to original panel data is not necessary as 
proposed by Goodhardt, Ehrenberg, and 
Chatfield (1984). Raw panel data cannot always 
be used since panel operators who measure 
sales and household consumption provide 
information only in some aggregate format such 
as market share, penetration, and average 
purchase rate with reference to the various 
brands (Wright, et al., 2002). In these situations, 
the only way to estimate the Dirichlet model is to 
use the traditional method.  
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Dirichlet modeling continues to be a successful 
and influential approach and is increasingly being 
used to provide norms against which brand 
performance can be interpreted (Uncles, et al., 
1995; Bhattacharya, 1997; Ehrenberg, et al., 
2000). Dirichlet model is useful for the provision of  
norms for stationary markets, to supply baselines 
for interpreting change (i.e., non-stationary 
situations) without having to match the results 
against a control sample, to help strategic 
decision-making, and to understand the nature of 
markets. 
  

There are diverse ways of applying the 
distribution,  where the Dirichlet has proved to be 
particularly useful is in modeling the distribution 
of words in text documents [9]. If we have a 
dictionary containing k possible words, then a 
particular document can be represented by a 
probability mass function [pmf] of length k- 
produced by normalizing the empirical frequency 
of its words. A group of documents produces a 
collection of pmfs, and we can fit a Dirichlet 
distribution to capture the variability of these 
pmfs. 

 
METHODOLOGY 
 
Deriving the Dirichlet Distribution 
 

Let be a random variable from the Gamma distribution  and let be 

independent. The joint pdf of  is: 

  

    if  

    

 
      

                  ,       otherwise 

 
 
Let, 

 
 
and  
 

 
 
By using the change of variables technique, this transformation maps 

 onto 

 The inverse 

functions are . Hence, the 

Jacobian is: 
 
 

 
 
 

Then, the joint pdf of  is:  
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By integrating out the joint pdf of  is: 

  

 
 

where  The joint pdf of the random variables 

is known as the pdf of the Dirichlet distribution with parameters Furthermore, it is 

clear that  has a Gamma distribution  and  is independent of  (Hogg and 

Craig,1970). 
 
 
Moment Generating Function  
 

The moment generating function of . Let   

 

The moment generating function of  at  is      

 

                                                                        (1) 

 
 

                                                                       (2) 

 
  Step  (a) 
 

 
 

 
 

 (3) 

 
In step (a), we apply the multinomial theorem: 
  

                                               (4) 

 

for any positive integer  and any non-negative integer . 
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Maximum Likelihood Estimation 
 
The ML estimation method concerns choosing parameters to maximize the joint density function of the 
sample (likelihood function). Therefore, we consider: 
  

                         (5) 

 

with constraints  and  for  We can consider  as prior 

probabilities under these constraints. Now suppose we have a sample that contains  random vectors 

  which are i.i.d.,  We maximize the following function with respect to  and : 

 

    (6) 
 

The first term of equation 8 is the log-likelihood function.  is the Lagrange multiplier in the second term. 

In the last term of eq. 8, we use an entropy-based criterion. Also,  is the ratio of the first term to the last 

term in  of each iteration  Nizar Bouguila, Djemel Ziou, and Jean Vaillancourt (2004). 

 

                                                (7)                                                                                   

 
In order to optimize (8), we need to solve the following equations:    
 

 
 

 
 

It is shown that the estimator of the prior probability  is: 

 

                        (8) 

 

Note that  is defined by (4.3) and  is the posterior probability where: 

 

                                              (9) 

 

Now we want to estimate the parameters  The Fisher scoring method is used to find 

these estimates. Denote  as one element of the parameter vector  for each component 

 The derivative of  with respect to  is: 

  

  (10) 
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where  is the Digamma function. However,  can become negative during iterations. In order to 

keep  strictly positive, set .  is any real number. Then, the derivative of  with 

respect to  is: 

 

  (11) 

  

 
 
By using the iterative scheme of the Fisher scoring method, we obtain:  
 

 (12) 

  

 
Note that the variance-covariance matrix is obtained by the inverse of the Fisher information matrix I and: 
  

                                                          (13) 

 
 
ANALYSIS AND RESULTS  
 
In this chapter, the results of the simulation study 
on the basis of the entire criterion at different 
sample sizes are presented and Performance of 
parameter estimation method in terms of Bias as 
the sample size and parameter dimension varies 
was discussed. 
 

Table 1: Results of the Bias at Different Alpha 
Level as Sample Size Varies. 

  

 
 
 
 

 

 

 
 
 

Alpha N QLE MLE MOM 

_1 = 0.45 10 0.4683 0.4771 1.1 

  20 0.2223 0.2324 1.1 

  30 0.1521 0.1638 1.1 

_2 = 0.75 40 0.1072 0.1195 1.1 

  50 0.0853 0.0977 1.1 

  75 0.0615 0.0743 1.1 

_3 = 0.90 100 0.0442 0.0567 1.1 

  250 0.0235 0.0362 1.0999 

Alpha N QLE MLE MOM 

_1 = 0.15 10 0.2328 0.3125 0.0994 

  20 0.1013 0.1848 0.1 

  30 0.067 0.151 0.1 

_2 = 0.30 40 0.0524 0.1371 0.0999 

  50 0.0401 0.1247 0.1 

  75 0.0286 0.1136 0.1 

_3 = 0.45 100 0.0219 0.1074 0.1 

  250 0.01 0.0964 0.1001 

Alpha N QLE MLE MOM 

_1 = 0.90 10 0.6564 0.6576 1.889 

  20 0.3141 0.3152 1.889 

  30 0.185 0.1862 1.888 

_2 = 0.99 40 0.1462 0.1476 1.8891 

  50 0.1264 0.1277 1.8891 

  75 0.0862 0.0876 1.8891 

_3 = 0.999 100 0.0638 0.0652 1.889 

  250 0.0324 0.0339 1.889 
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Based on the above table, it was observed that 
the level of alpha the Quasi-likelihood estimator 
(QLE) has the least value of Bias as the sample 
size increases and performs better compared with  
the Method of Moment and Maximum likelihood 
estimator. 
 

Table 2: Results of the Variance at Different 
Alpha Level as Sample Size Varies. 

 

 

 

 
Based on the above table and Appendix 2,  it was 
observed that the performance of parameter 
estimation method in terms of Variance, as the 
sample size increases Method of Moment 
performs better compared with the Quasi-

likelihood estimator and Maximum likelihood 
estimator. 
 

Table 3: Results of the Mean Absolute Error 
(MAE) at Different Alpha Level as Sample Size 

Varies. 

 

 

 
 

Performance of parameter estimation method in 
terms of Mean Absolute Error (MAE) as the 
sample size increases, Maximum likelihood 
estimator performs better than Quasi-likelihood 
estimator and Method of moment as shown in 
Table 3. 
 
 

Alpha N QLE MLE MOM 

_1 = 0.15 10 0.3652 0.3982 0.2668 

  20 0.2171 0.2484 0.1915 

  30 0.1671 0.2003 0.1633 

_2 = 0.30 40 0.1438 0.1792 0.1512 

  50 0.1262 0.1626 0.1396 

  75 0.0995 0.1396 0.1233 

_3 = 0.45 100 0.0873 0.1292 0.1181 

  250 0.052 0.104 0.1043 

Alpha N QLE MLE MOM 

_1 = 0.15 10 0.108 0.1167 0.0325 

  20 0.0355 0.0379 0.0158 

  30 0.0187 0.02 0.0103 

_2 = 0.30 40 0.0139 0.0148 0.0082 

  50 0.0108 0.0116 0.0065 

  75 0.0063 0.0067 0.0041 

_3 = 0.45 100 0.0048 0.0051 0.0033 

  250 0.0018 0.0019 0.0013 

Alpha n QLE MLE MOM 

_1 = 0.45 10 0.4132 0.4128 0.0207 

  20 0.144 0.1444 0.0101 

  30 0.0863 0.0858 0.0071 

_2 = 0.75 40 0.0565 0.0563 0.0051 

  50 0.043 0.0426 0.004 

  75 0.0279 0.0277 0.0028 

_3 = 0.90 100 0.0201 0.0199 0.0021 

  250 0.0076 0.0075 0.0008 

Alpha N QLE MLE MOM 

_1 = 0.90 10 0.6887 0.6885 0.0173 

  20 0.2398 0.2396 0.0086 

  30 0.1286 0.1285 0.0056 

_2 = 0.99 40 0.0926 0.0925 0.0043 

  50 0.0772 0.0772 0.0034 

  75 0.05 0.0498 0.0023 

_3 = 0.999 100 0.0353 0.0353 0.0018 

  250 0.0134 0.0134 0.0006 

Alpha n QLE MLE MOM 

_1 = 0.90 10 1.0665 1.0665 1.8917 

  20 0.6602 0.6601 1.889 

  30 0.4866 0.4865 1.889 

_2 = 0.99 40 0.4212 0.4211 1.8891 

  50 0.3827 0.3825 1.8891 

  75 0.3059 0.3057 1.8891 

_3 = 0.999 100 0.2622 0.2622 1.889 

  250 0.1588 0.1588 1.889 

Alpha n QLE MLE MOM 

_1 = 0.45 10 0.7774 0.7778 1.1001 

  20 0.486 0.4859 1.1 

  30 0.3818 0.3815 1.1 

_2 = 0.75 40 0.3138 0.3147 1.1 

  50 0.2748 0.2748 1.1 

  75 0.2216 0.2225 1.1 

_3 = 0.90 100 0.186 0.1863 1.1 

  250 0.1157 0.1168 1.0999 

http://www.akamaiuniversity.us/PJST.htm


The Pacific Journal of Science and Technology               –166– 
http://www.akamaiuniversity.us/PJST.htm                                            Volume 21.  Number 2.  November 2020 (Fall) 

Table 4: Results of the Mean Square Error (MSE) 
at Different Alpha Level as Sample Size Varies. 

 

Alpha N QLE MLE MOM 

_1 = 0.15 10 0.1335 0.1569 0.0375 

  20 0.0401 0.0503 0.0199 

  30 0.0207 0.0281 0.0144 

_2 = 0.30 40 0.0152 0.0214 0.0122 

  50 0.0115 0.017 0.0105 

  75 0.0066 0.0112 0.0081 

_3 = 0.45 100 0.0051 0.0091 0.0071 

  250 0.0018 0.0051 0.0052 

 

Alpha N QLE MLE MOM 

_1 = 0.45 10 0.4945 0.4969 0.4532 

  20 0.1624 0.1633 0.4421 

  30 0.095 0.0957 0.439 

_2 = 0.75 40 0.0608 0.0615 0.4371 

  50 0.0457 0.0461 0.4363 

  75 0.0293 0.0298 0.435 

_3 = 0.90 100 0.0207 0.021 0.445 

  250 0.0078 0.008 0.4328 

 

 
Performance of parameter estimation method in 
terms of Mean Square Error (MSE) as the sample 
size increases the Quasi- likelihood estimator and 
Maximum likelihood estimator performs better as 
compare to Method of Moment. as shown in Table 
4. 
 
Conclusively, the best method for each criterion 
was based on the modal class for the entire 
criterion as summarized in Table 5. 
 
 

Table 5: Shows the Count of Quasi-Likelihood 
Estimator, Maximum Likelihood Estimator and 
Method of Moment using Bias, Variance, Mean 

Absolute Error and Mean Square Error. 
 

Count Best 

Method Criterion QLE MLE MOM 

Bias 77 0 2 QLE 

MSE 57 35 11 QLE 

MAE 34 48 6 MLE 

VAR 4 11 66 MOM 

 
 

 
 

Figure 1:  Bias of the Estimator of QLE, MLE, 
MOM at Different Sample Sizes. 

 
 
The graph shows the Bias of the estimator of 
QLE, MLE, MOM at different sample sizes. 
Judging by the bias criterion, the Quasi-
Likelihood method (QLE) was the best for the 
lower and medium level of alpha, but for the 
higher level of alpha, Method of Moment 
performs better. 
 
 

 
 

Figure 2:  Variance of the estimator of QLE, 
MLE, MOM at Different Sample Sizes. 

 
 
 
 

Alpha n QLE MLE MOM 

_1 = 0.90 10 0.8341 0.8342 1.2088 

  20 0.273 0.273 1.2005 

  30 0.1401 0.1401 1.1976 

_2 = 0.99 40 0.0999 0.0999 1.1961 

  50 0.0827 0.0827 1.1953 

  75 0.0525 0.0525 1.1944 

_3 = 0.999 100 0.0367 0.0367 1.1938 

  250 0.0137 0.0137 1.1927 
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The graph shows the Variance of the estimator of 
QLE, MLE, MOM at different sample sizes. From 
the graph, Method of moment consistently 
performed better across the alpha (parameter) 
level which implies that the method of Moment is 
the best method. 
 

 
 

Figure 3:  Mean Absolute Error (MAE) of the 
Estimator of QLE, MLE, MOM at Different Sample 

Sizes. 
 
The graph shows the Mean Absolute Error (MAE) 
of the estimator of QLE, MLE, MOM at different 
sample sizes. The Quasi-Likelihood method 
(QLE) outperformed the other methods for lower 
level of alpha but as the alpha level increases 
(medium level and above) the Maximum 
Likelihood method (MLE) and the QLE has just a 
slight difference in their estimates. Out of the 
three methods considered, the method of Moment 
consistently gives the higher estimate of Mean 
Absolute Error. 
 

 
 

Figure 4:  Mean Square Error (MSE) of the 
Estimator of QLE, MLE, MOM at Different Sample 

Sizes. 
 
 
The graph shows the Mean Square Error (MSE) 
of the estimator of QLE, MLE, MOM at different 
sample sizes. QLE method was the best for lower 
level of alpha, but as for the medium and higher 
level of alpha the QLE and the MLE does not give 
a significant different estimate. While on the other 

hand, the MOM gives a consistently higher 
estimate of Mean square error. 
 
 
REAL LIFE DATA RESULTS 
  
Fitting Dirichlet Model to Data Containing 
Selected Agricultural Products in Nigeria (2008-
2017). 
 

Table 6: Parameter Estimation (QLE). 
 

Coefficients Estimate Std. Error 

1 0.2260442 0.1438496 

2 0.1729296 0.1390305 

 3 0.2410169 0.1453349 

 
 
From the table above, we obtained the estimates 
of the mean and standard error of millet, millet 
rice, and sorghum. The parameter estimate of 
millet rice is more efficient due to its lowest 
standard error as compared to others.   
 

Table 7: Parameter Estimation (MLE) 
 

Coefficients Estimate Std. Error 

1 0.03325620 0.455928 

2 0.02179287 0.401919 

 3 0.03987597 0.471691 

 
 
From the table above, we obtained the estimates 
of the mean and standard error of millet, millet 
rice, and sorghum. The parameter estimate of 
millet rice is more efficient due to its lowest 
standard error as compared to others. 
 

Table 8: Parameter Estimation (MOM). 
 

Coefficients Estimate Std. Error 

1 0.04000534 0.4591688 

2 0.01302276 0.309861 

 3 0.05461017 0.4750334 

 
From the table above, we obtained the estimates 
of the mean and standard error of millet, millet 
rice, and sorghum. The parameter estimate of 
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millet rice is more efficient due to its lowest 
standard error as compared to others. 
 
Conclusively, the quasi-likelihood estimator 
performs the best as compared to others. 
 
 
CONCLUSION  
 
The Dirichlet distribution is a multivariate 
generalization of the Beta distribution. In this 
research, we introduced three methods of 
estimation for Dirichlet distribution which are 
maximum likelihood estimator (MLE), Method of 
Moment (MOM) and Quasi-likelihood estimator. 
This was done in other to obtain the most efficient 
method. An extensive simulation study was 
carried out on the basis of selected criterion (Bias, 
Variance, Mean absolute error and Mean square 
error) considering various sample sizes, also the 
methods were subjected to real life data.  
 
The performance of these methods was 
compared at different sample sizes it shows that 
the Quasi-likelihood estimator performs better in 
terms of Bias, than the other methods, while 
Method of Moment performs better in terms of 
Variance, than the other methods. Maximum 
likelihood estimator performs better in terms of 
Mean Absolute Error (MAE) and (MSE) than the 
other methods.  
 
The real-life results show that Quasi-likelihood 
estimator performs better as compared to Method 
of moment and Maximum likelihood estimator, 
also the Bayes factor of Dirichlet distribution gives 
57.95215, which implies a very strong evidence of 
the Goodness of Fits. Hence, the Dirichlet 
distribution is efficient based on what we have 
done with higher precision and more adequacies 
in the estimate of the model, also the estimate of 
the model should be used in taking any 
prospective decision and can be reliable if large 
samples is involved. 
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