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ABSTRACT 
 
Different forms of discriminant functions, 
reasons for their appearances, and instances of 
classification problems have been considered in 
this study. Violation of condition of equal 
variance covariance matrix for Linear 
Discriminant Function (LDF) results to Quadratic 
Discriminant Function (QDF). The relationships 
among the classification statistics are 
established:  The Anderson’s (W) and Rao’s (R) 
statistics  are equivalent when the two sample 
sizes are equal, and when a constant is equal to 
1, W , R and John-Kudo’s (Z) classification 
statistics are asymptotically comparable. A linear 
relationship is also established between W and 
Z classification statistics.    

 
(Keywords: discriminant functions, classification 

statistics, classification problems, covariance matrix, 
probability of misclassification). 

 
 
INTRODUCTION 
 
Discriminant analysis is a statistical method 
used for classification of objects into mutually 
exclusive and exhaustive groups on the basis of 
a set of independent variables. The method 
handles two or multiple group problems. It also 
derives linear combinations of the independent 
variables that discriminate between the a priori 
defined groups, such that the error rates 
misclassification are minimized as much as 
possible (William and Mathew, 1984). Thus, 
discriminant analysis finds a mean of classifying 
objects into groups with accuracy and also 
determines the dimensions on which the group 
differ (John, 2015). 

 
Suppose Y~N1 x N (µ, Σ), where Σ is positive 
definite. Then the probability density function 
(pdf) of Y expressed as: 
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Given that the individual
's

kf are multivariate 

normal densities with different means but 
common covariance matrix, so that 

1/ ~ ( , )i i xp mX Y m N =  . The probability 

density function of Y becomes: 
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The factors that depend on m are ignored since 
individual interest is on the highest pdf of 

.m Thus, for a given X, m is chosen to 

maximize 
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 by taking its log to 

have the discriminant function:  
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Several reasons have been given for the 
emergence of different types of discriminant 
functions, and notably among them are:  
contraventions of assumptions employed for the 
cradle of Fisher’s Linear Discriminant Function 
(FLDF); efforts to reduce as much as possible, 
the derivatives of errors of misclassification; 
efforts to get permissible methods that minimize 
probabilities of misclassification and also as an 
underline issue, testing of hypothesis. 
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This study therefore considers different forms of 
classification statistics, instances of classification 
problems and correlations existing among the 
discriminant functions. 
 
 
Examples of Classification Problems  
 

(i) A large international Air Carrier collects data 
on employees in three different job classification 
(customer service personnel, mechanic, and 
dispatches). The Director of Human Resources 
may wish to know if these three job 
classifications appeal to different personality 
types (Awogbemi, 2019). 
 
(ii) A number of variables are measured at five 
weather stations. Based on these variables, we 
may wish to predict the ceiling at a particular 
airport in 2 hours. The ceiling categories are 
closed, low instrument, high instrument, low 
open, and high open. 
 
(ii) In a brand-switching system, one may wish to 
detect fast and slow consumers of newly 
introduced product on the basis of consumers’ 
characteristics such as education, income, 
family size, and amount of previous brand-
switching. 
 
(iv) A nutritionist may desire to classify different 
classes of food into distinct category of food 
nutrients such as carbohydrates, fats and oil, 
vitamins, proteins, minerals, etc., on the basis of 
measurements of amount of different nutrients in 
the food. 
 
(v) Astronomers have been cataloguing distant 
objects in the sky using long exposure CCD 
images. The objects need to be labeled as star, 
galaxy, nebula, etc. The data is highly noisy, and 
the images are very faint. The cataloguing can 
take decades to complete. Can an automated 
cataloguing process be designed to improve its 
effectiveness and efficiency? 
 
(vi) In a hospital, a patient is admitted with a 
diagnosis of myocardial infarction, and systolic 
blood pressure, heart rate, stroke index, and 
mean arterial pressure are obtained by the 
Doctor. Is it possible to predict whether the 
patient will survive? On the basis of these 
measurements, can we compute a probability of 
survival for the patient? (Onyeagu, 2003; Ekezie, 
2013). 

(vii) In an anthropological study, an Archeologist 
obtained a jawbone excavated from a burial 
ground as having belonged to a male or female. 
Can an assignment be made on the basis of 
measurements such as circumference and 
volume made on the jawbones from the two sets 
of people? (Morrison, 2003). 
 
(viii) A Geologist obtained the mean, variance, 
skewness and kurtosis of the size of particles 
deposited in a beach. How can these statistics 
be used to determine if the beach is wave-laid or 
Aeolian in origin? Are there differences in 
particle size distribution? 
 
(ix) An emergency room in a hospital measures 
a number of variables such as blood pressure, 
age, etc. of newly admitted patients. A decision 
has to be taken whether to put the patient in an 
Intensive Care Unit (ICU). Due to the high cost 
of ICU, those patients who may survive a month 
or more are given higher priority. The problem is 
to predict high risk patients and discriminate 
them from low-risk patient (Awogbemi, 2019). 
 
(x) A credit card company receives hundreds of 
thousands of applications for new cards. The 
application contains information regarding 
several different attributes, such as annual 
salary, any outstanding debts, age, etc. The 
problem is to categorize applications into those 
who have good credit, bad credit, or fall into a 
gray area (Awogbemi, 2019). 
 
(xi) African or “killer bees” cannot be 
distinguished visually from ordinary domestic 
honey bees. What kind of variables based on 
chromatograph peaks can be used to readily 
identify them? (Alvin, 2002) 
 
(xii) A meteorologist wants to predict cloud 

ceiling at time, 1 ,t  on the basis of physical 

measurements acquired at time, 0 1, ,t t  where 

0 1t t .  In this case, it is assumed that historic 

data are readily available to assist in determining 
an assignment rule (William and Matthew, 
1984). 
 
In each of the cases mentioned, we wish to 
classify from simple functions of the 
observational vector rather than complicated 
regions in the higher-dimensional space of the 
original vector. 
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Different Forms of Classification Statistics 

Different types of discriminant functions and 
some of their properties are appraised in this 
study: 
 
 
(i)  Linear Discriminant Function (LDF) 
 
The Linear Discriminant Function (LDF) is a 
statistical procedure constructed as: 
  

( ) ( )
1

1

1 2 1 2
,; , ; (1)C X X    − = − 

  

It assigns p-dimensional observation vector, ,X  

into one of the two populations, i  (i = 1, 2), and 

it is employed as an assignment rule when the 
following assumptions are satisfied. 
 
The density functions of observations from 

populations 1  
and 2  are multivariate normal; 

( , ), 1, 2( )N ipi i
   = ; the variance-

covariance matrix 1( )  in  population, 1  is the 

same as 2( )
 

in population 
2

 ; the prior 

probabilities of observations coming from 

populations 1  and 2  are known; the 

parameters of the density functions are also 
known. 
 
However, the unknown parameters are 
estimated from the samples as:   
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where, 1 2, ,X X S  are estimates of 
1 2
, ,    

respectively.  
 
Suppose the assumptions specified above are 
satisfied, then the Linear Discriminant Function 
(LDF) provides optimal assignment rule in that it 
cannot be improved upon and the errors of 
misclassification are minimized. However, when 
some or all the assumptions are violated, it 
would be of interest to researchers to determine 
the effects of the violation on the procedures 
using LDF.  
 

Based on Fisher (1936), Welch (1939) and Wald 
(1944) established that LDF optimal properties 
for two group classification of the populations 
are multivariate normally distributed. 
 
 
(ii) Quadratic Discriminant Function (QDF) 
 
When the assumptions of equal covariance 
matrices from two populations are violated, QDF 
arises and the derivation is established using 
likelihood ratio rule. If the parameters are known, 
the classification statistic is expressed as: 
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where X  is a vector of observations, ,
1 2

   

are the mean vectors and  1, 2  are different 

covariance matrices from populations 1  and 

2 , respectively. 

 
When the parameters are estimated from the 
samples, 
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The sturdiness of  QDF was studied by Gilbert 

(1969)  when 1 =  and m=   ( m is a 

constant) and also by Lachenbruch, et al. (1973) 
in respect of non-normality. The statistic (QDF) 
is optimal when the population parameters are 

known and 1 2 =  . 
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(iii) Anderson’s Statistic (W) 
 
The statistic arose from Anderson’s derivation in 
respect of two population parameters that are 
multivariate normally distributed with different 
means and constant covariance matrix                   
(Anderson, 2003, 1973). When the population 
parameters are known, the W is defined as: 
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and when the parameters are estimated from the 
samples, 
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The statistic (W) is different from LDF by a 

constant, ( ) ( )
1 1
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2
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, − −  when parameters are 

estimated from the samples. 
 
 
(iv)  Best Linear Classification Statistic 
(BLCS) 
 
The statistic was introduced by Clumies-Ross 
and Riffenburg (1960) and Anderson and 
Bahadur (1962) under the same condition with 
QDF. The statistic is expressed as: 
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where ( ) ( )
1

1 1 2 2 1 2m n n  
−

=  +  −  and  1n  

and 2n  are scalars selected to reduce the 

probability of misclassification as much as 
possible. 
 
When the parameters are estimated from the 
samples, BLCS is defined as: 
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where  ( )( )2 11 2 2 2m n S n S X X= + −  and 

1n and 2n  minimize probability of 

misclassification. The BLCS is optimal when the 
conditions for QDF hold. 
 
 
(v)  John-Kudo’s Classification Statistic (Z) 
 

Let  X  be a vector of observations whose 

distribution in two populations is multivariate 
normal, with the same covariance matrix and 
different estimated sample means. Then the 
statistic Z is defined as: 
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where  1n  and 2n  are the sample sizes, α is a 

constant and S is the estimated covariance 
matrix (John, 1965; Kudo, 1959). 
 
 
(vi)  Rao’s  Classification Statistics ( R) 
 
The Statistic (R) was derived by Rao (1954) 
under the condition that the distribution of a 

vector of observations X  from two populations 

1  and 2  is multivariate normal. Rao also 

assumed that samples n1 and n2 are from  

populations 1  and 2  respectively. The R 

statistic is expressed as: 
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Where,            
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Correlations linking the Classification 

Statistics 

The LDF results to QDF when the variance 
covariance matrices condition is violated. If the 
samples sizes n1 and n2 are the same, then 
Rao’s (R) and Anderson’s (W) statistics are 

comparable. When 1, =  the statistics W, R 

and Z are asymptotically comparable. Suppose 

that 1 2 , 1,n n n = = =  then there is a linear 

relationship between Z and W statistics 
expressed as:  

                      

2
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W
n
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n
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If the two sample sizes are the same, and the 
total sample size less by 2 are sufficiently large, 
then,  
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approximates to  1 (Siotani, 1975). 

 

 
CONCLUSION 
 
The problem of classification of observations has 
been the focus of research since the introduction 
of Fisher’s Linear Discriminant Function (FLDF). 
Contraventions on the assumptions of LDF have 
resulted to appearances of QDF and other 
discriminant functions.  
 
Correlations existing among LDF, QDF and 
some other forms of classification statistics are 
well established in this study. For each of the 
classification problems considered, a 
classification from a simple function of 
observational vector has been made, rather than 
complicated regions in the higher-dimensional 
space of the original vector. 
 
 
REFERENCES 
 
1. Alvin, C.R. 2002. Methods of  Multivariate 

Analysis. John Wiley & Sons: New York, NY. 
 

2. Anderson, T.W. 1973. Asymptotic Evaluation of 
the Probabilities of Misclassification by Linear 
Discriminant Functions (LDF): Discriminant 
Analysis and Applications. T. Cacoullos (Ed.). 17-
35, Academic Press: New-York, NY.  
 

3. Anderson, T.W. 2003. An Introduction to 
Multivariate Statistical Methods. John Wiley & 
Sons: New York, NY. 
 

4. Anderson, T.W. and R.R. Bahadur. 1962. 
“Classification into Two Multivariate Normal 
Distributions with Different Covariance Matrices”. 
Annals of Mathematical Statistics. 33: 420-431. 
 

5. Awogbemi, C.A. 2019. “Errors of Misclassification 
Associated with Edgeworth Series Distribution”. 
Unpublished Ph.D. Dissertation. Department of 
Statistics, Faculty of Physical Sciences, Nnamdi 
Azikiwe University: Awka, Nigeria. 
 

6. Clumies-Ross, C.W. and R.H. Riffenburgh. 1960. 
“Geometry and Linear Discrimination”. 
Biometrika. 47: 185-189. 
 

7. Ekezie, D.D. and S.I. Onyeagu. 2013.  
“Comparison of Seven Asymptotic Expansions for 
the Sample Linear Discriminant Function”. 
Canadian Journal of Computations in 
Mathematics, Natural Sciences, Engineering and 
Medicine. 4(1): 93-115. 
 

8. Fisher, F.A. 1936. “The Use of Multiple 
Measurements in Taxonomic Problems”. Annals 
of Eugenics. 7:179-188. 
 

9. Gilbert, E.S. 1969. “The Effect of Unequal 
Variance-Covariance Matrices on Fisher’s Linear 
Discriminant Function”. Biometrics. 25:424-427. 
 

10. John, I.M. 2005. “Multivariate Statistics, 
Department of Statistics”. University of Illinois, 
Urbana Champaign: Urbana, IL. 
URL:http://stat.istics.net/Multivariate. 
 

11. John, S. 1965. “Corrections to: On Classification 
by Statistics, R and Z". Ann. Inst. Math. 7: 113: 
 

12. Kudo, A. 1959. “The Classificatory Problem 
viewed as a Two-Decision Problem”. 
Unpublished Masters’ Thesis of the Faculty of 
Science, Kyushu University: Japan. 13: 96-125. 
 

13. Lachenbruch, P.A., C. Sneeringer, and L.T. 
Revo. 1973. “Robustness of the Linear and 
Quadratic Discriminant Function to Certain Types 
of Non-normality”. Journal of Communication 
Statistics. 1: 39-57. 
 

14. Morrison, D.F. 2003. Multivariate Statistical 
Methods. McGraw-Hill Publishing: London, UK.  

http://www.akamaiuniversity.us/PJST.htm


The Pacific Journal of Science and Technology               –151– 
http://www.akamaiuniversity.us/PJST.htm                                            Volume 21.  Number 2.  November 2020 (Fall) 

15. Onyeagu, S.I. 2003. “A First Course in 
Multivariate Statistical Analysis”. Mega Concept: 
Awka, Nigeria. 
 

16. Rao, C.R. 1954. “A General Theory of 
Discrimination when the Information about 
Alternative Population Distribution is Based on 
Samples”. Annals of Mathematical Statistics. 25: 
651- 670. 
 

17. Siotani, M. 1975. “Comparison of Two 
Procedures in Discriminant Analysis based on 
Anderson's W-Criterion and John-Kudo's Z-
Criterion”. Tech. Report No. 67, University Of 
Manitoba, Department of Statistics: Winnipeg, 
Canada. 

 
18. Wald, A. 1944. “On a Statistical Problem arising 

in the Classification of an Individual into One of 
Two Groups”. Ann. Math. Stat. 15:145-162. 
 

19. Welch, B.L. 1939. “Notes on Discriminant 
Functions”. Biometrika. 31: 218-220. 

 
 

SUGGESTED CITATION  
 
Awogbemi, C.A. 2020. “Annotations on 
Discriminant Functions”. Pacific Journal of 
Science and Technology. 21(2):146-151. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Pacific Journal of Science and Technology 

http://www.akamaiuniversity.us/PJST.htm
http://www.akamaiuniversity.us/PJST.htm

