
The Pacific Journal of Science and Technology –12–
http://www.akamaiuniversity.us/PJST.htm Volume 21. Number 2. November 2020 (Fall)

The Development of Computer Program for the Welding Interface of the
Developed Welding Mini-Robot

D.H. Oladebeye, Ph.D.1*; Prof. S.B. Adejuyigbe2; and A.A.G. Olorunnishola, Ph.D.3

1Department of Mechanical Engineering Technology, Federal Polytechnic, Ado-Ekiti, Ekiti State, Nigeria.
2Mechatronics Engineering Department, Federal University, Oye-Ekiti, Ekiti State, Nigeria.

3Department of Mechanical Engineering Technology, Federal Polytechnic, Ado-Ekiti, Ekiti State, Nigeria.

E-mail: dayobeye@yahoo.com*
solaakim73@gmail.com

ABSTRACT

There have been scanty studies on automation of
welding operations in developing countries,
especially Nigeria. This phenomenon had brought
the need for the development of a computer
program for the welding interface of the developed
welding mini-robot to enable automation of welding
processes. The welding robot, a Cartesian type for
its simplicity and cost-effectiveness in production,
was constructed and operated by developing
computer software with Peripheral Interface
Controller (PIC) of specification PIC16F877 for the
automation of the welding robot operation. The PIC
was connected to stepper motors of specification
NEMA 23 of 2 Nm torque and 1000 rpm for X-axis,
Y-axis and Z-axis to control the movement of the
welding robot in any specified direction. The
developed program was validated by comparing
results of practical values obtained from developed
welding robot with the conventional electric arc
welding machine operations. Results have shown
that the developed welding robot can weld mild
steel plates linearly along the length of guide 470
mm on X-axis, 350 mm on Y-axis and 110 mm on
Z-axis at welding time (4.7-32.94s) faster than the
conventional Electric Arc Welding Machine’s (15-
45s).

(Keywords: computer program, welding interface,
welding, mini-robot, manual arc welding).

INTRODUCTION

According to the American Robotics Institute, a
robot is a "reprogrammable, multifunctional
manipulator designed to move materials, parts,
tools, or specialized devices, to variable
programmed motions for performing a variety of
tasks". While Joseph Engelburger already
developed the first industrial robot in the mid-

1950s, robotic arc welding was first used in
production until the mid-1970s [1]. Based on the
geometry of the workspace, the most commonly
used type for industrial robotic arc welding is
robot with a revolute (or joined arm) configuration
[2]. To this end, it is necessary to develop an
intelligence technology to enhance the current
method of learning and use for playback
programming for welding robots to achieve the
high quality and versatility required of welded
products [3, 4].

In the past, manufacturers also only looked at
their most complicated pieces as candidates for
automation and concluded that the projects were
not economically justifiable. More flexible
systems today minimize the need for dedicated
fixing and facilitate the switching of production
from one part to another. The 80/20 rule also
applies, as eighty percent of a company's
production usually accounts for only 20 percent
of its part sizes.

The new robotic welding cells make it easier to
automate more of these easy, often repetitive
jobs and to turn quickly from one to another. The
key reason to automate this is that it makes
economic sense. Robotic systems are now more
affordable than ever, for short to medium run
applications. With a lower investment and greater
productivity improvements, the return on
investment (ROI) is greater than with larger,
individually designed welding lines [5]. Consistent
consistency is another justification for
automating. The less uncontrolled variables in
the process, the higher the weld quality and the
more homogeneous they are. Increased service
rates and quicker processing times also help
generate greater value for the customers.

http://www.akamaiuniversity.us/PJST.htm
mailto:dayobeye@yahoo.com

The Pacific Journal of Science and Technology –13–
http://www.akamaiuniversity.us/PJST.htm Volume 21. Number 2. November 2020 (Fall)

The flexible fixing or workholding incorporated in
the newest robotic cells makes it easy to switch
back and forth between varieties of different
products with little change over time, as opposed
to custom fixtures. This also increases productivity
and boosts ROI [6]. In addition to competitive unit
costs, robotic welding systems provide other
advantages, such as increased efficiency, health,
weld consistency, flexibility and utilization of the
workspace, and reduced labor costs [7, 8].

Ismara and Prianto, [9] have developed that the
needs analysis relating to the industrial arm's
welding robot arm is used as the basic template
for redesigning, developing and compiling the
implementation of the robotic arms-assisted
welding education laboratory model. It concluded
that the use of the robotic arm is expected to
make the students who practice as operators feel
comfortable, happy, and enjoyable to enhance the
motivation to learn. There are several things to
consider when building a robotic welding facility.

Robotic welding must be viewed differently from
manual welding. Some of the considerations for a
robotic welding facility are listed below: start/stop,
pre-flushing gas, electrode feed and nozzle
flushing included in the selected welding
programs. Robots were used for the welding of
complete automotive body assembly and sub-
assembly components for around 15 years. In
general the automatic arc welding equipment is
constructed differently from that used for manual
arc welding.

Automatic arc welding normally involves high duty
cycles and, under those conditions, the welding
equipment must be able to operate. In addition,
the components of the equipment must have the
functions and controls necessary to interface with
the control system. The number of items to be
welded of any type must be sufficiently high to
justify process automation [6]. In view of the
importance of robotic welding to the economic
advancement of Nigeria, a computer program for
the welding interface of a mini welding robot was
developed in this research work.

History of Peripheral Interface Controller (PIC)

Peripheral Interface Controller (PIC) is a digital
computer used for automation of typically
industrial electro-mechanical processes, such as
control of machinery on factory assembly lines,
amusement rides, or light fixtures. Peripheral

Interface Controllers (PICs) are used in many
industries and machines.

PICs are designed for multiple analogue and
digital inputs and output arrangements, extended
temperature ranges, immunity to electrical noise,
and resistance to vibration and impact. Programs
to control machine operation are typically stored
in battery-backed-up or non-volatile memory. PIC
is an example of a "hard" real-time system since
output results must be produced in response to
input conditions within a limited time, otherwise
unintended operation will result, [10].

The original PIC was built to be used with
General Instrument's new CP1600 16-bit Central
Processing Unit (CPU). The CP1600 had poor
I/O performance, and the 8-bit PIC was
developed in 1975 to improve performance of the
overall system by offloading I/O tasks from the
CPU. The PIC used simple microcode stored in
ROM to perform its tasks, and although the term
was not used at the time, it shares some
common features with Reduced Instructions Set
Computer (RISC) designs.

In 1985, General Instrument spun off their
microelectronics division and the new ownership
cancelled almost everything which by this time
was mostly out-of-date. The PIC, however, was
upgraded with an internal EPROM to produce a
programmable channel controller. Today, a huge
variety of PICs are available with various on-
board peripherals (serial communication
modules, Universal Asynchronous
Receiver/Transmitters (UARTs), motor control
kernels, etc.) and program memory from 256
words to 64k words and more (a "word" is one
assembly language instruction, varying in length
from 8 to 16 bits, depending on the specific PIC
micro family) [11].

PIC and PIC micro are registered trademarks of
Microchip Technology. It is generally thought that
PIC stands for Peripheral Interface Controller,
although General Instruments' original acronym
for the initial PIC1640 and PIC1650 devices was
"Programmable Interface Controller". The
acronym was quickly replaced with
"Programmable Intelligent Computer". The
Microchip 16C84 (PIC16x84), introduced in 1993,
was the first Microchip CPU with on-chip
EEPROM memory. By 2013, Microchip was
shipping over one billion PIC microcontrollers
every year [10].

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –14–
http://www.akamaiuniversity.us/PJST.htm Volume 21. Number 2. November 2020 (Fall)

Table 1: Core Architecture of Peripheral Interface Controller (PIC).

Architecture Family Data Width Instruction Width

8-bit MCU

PIC 10 / PIC 12 / PIC 16 Base line 8 bits 12-bits

PIC 18 Mid-Range 14-bit

16-bits

16-bit MCU PIC 24 Integrated DSP 16 bits 16 bits

DS-PIC 30

32-bit MCU 32 bits 32 bits

Source: Peripheral Interface Controller (PIC) Micro Family Tree, 2004.

Core Architecture of Peripheral Interface
Controller (PIC)

There is no distinction between memory space
and register space because the RAM serves the
job of both memory and registers, and the RAM is
usually just referred to as the register file or simply
as the registers. The PIC architecture is
characterized by its multiple attributes and its
families as shown in Table 1.

Data spaces of PICs have a set of registers that
function as general-purpose RAM. Special-
purpose control registers for on-chip hardware
resources are also mapped into the data space.
The addressability of memory varies depending
on device series, and all PIC devices have some
banking mechanism to extend addressing to
additional memory. Later series of devices feature
move instructions, which can cover the whole
addressable space, independent of the selected
bank. In earlier devices, any register move had to
be achieved through the accumulator.

To implement indirect addressing, a "File Select
Register" (FSR) and "INDirect register File"
(INDF) are used. A register number is written to
the FSR, after which reads from or writes to INDF
will actually be to or from the register pointed to by
FSR. Later devices extended this concept with
post- and pre- increment/decrement for greater
efficiency in accessing sequentially stored data.
This also allows FSR to be treated almost like a
Stack Pointer (SP) [11].

The code space is generally implemented as
ROM, EPROM or flash RAM. In general, external
code memory is not directly addressable due to
the lack of an external memory interface. External
data memory is not directly addressable except in
some PIC18 devices with high pin count. The
exceptions are PIC17 and select high pin count
PIC18 devices. PICs handle data in 8-bit chunks.
However, the unit of addressability of the code

space is not generally the same as the data
space. For example, PICs in the baseline (PIC12)
and mid-range (PIC16) families have program
memory addressable in the same word size as
the instruction width, i.e. 12 or 14 bits
respectively. In contrast, in the PIC18 series, the
program memory is addressed in 8-bit
increments (bytes), which differ from the
instruction width of 16 bits. In order to be clear,
the program memory capacity is usually stated in
number of (single-word) instructions, rather than
in bytes.

PICs have a hardware call stack, which is used to
save return addresses. The hardware stack is not
software-accessible on earlier devices, but this
changed with the 18 series devices. Hardware
support for a general-purpose parameter stack
was lacking in early series, but this greatly
improved in the 18 series, making the 18 series
architecture more-friendly to high-level language
compilers. PIC's instructions vary from about 35
instructions for the low-end PICs to over 80
instructions for the high-end PICs.

The instruction set includes instructions to
perform a variety of operations on registers
directly, the accumulator and a literal constant or
the accumulator and a register, as well as for
conditional execution, and program branching.
Some operations, such as bit setting and testing,
can be performed on any numbered register, but
bi-operand arithmetic operations always involve
Windows (W) which is the accumulator), writing
the result back to either W or the other operand
register. To load a constant, it is necessary to
load it into W before it can be moved into another
register. On the older cores, all register moves
needed to pass through W, but this changed on
the "high-end" cores.

PIC cores have skip instructions, which are used
for conditional execution and branching. The skip
instructions are "skip if bit set" and "skip if bit not

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –15–
http://www.akamaiuniversity.us/PJST.htm Volume 21. Number 2. November 2020 (Fall)

set". Because cores before PIC18 had only
unconditional branch instructions, conditional
jumps are implemented by a conditional skip (with
the opposite condition) followed by an
unconditional branch. Skips are also of utility for
conditional execution of any immediate single
following instruction.

It is possible to skip instructions. For example, the
instruction sequence "skip if A; skip if B; C" will
execute C if A is true or if B is false. The 18 series
implemented shadow, registers which save
several important registers during an interrupt,
providing hardware support for automatically
saving processor state when servicing interrupts,
[11].

The architectural decisions are directed at the
maximization of speed-to-cost ratio. The PIC
architecture was among the first scalar CPU
designs and is still among the simplest and
cheapest. The Harvard architecture, in which
instructions and data come from separate
sources, simplifies timing and microcircuit design
greatly, and this benefits clock speed, price, and
power consumption. The PIC instruction set is
suited to implementation of fast lookup tables in
the program space. Such lookups take one
instruction and two instruction cycles. Many
functions can be modeled in this way.

Optimization is facilitated by the relatively large
program space of the PIC (e.g. 4096 × 14-bit
words on the 16F690) and by the design of the
instruction set, which allows embedded constants.
For example, a branch instruction's target may be
indexed by W, and execute a Return with Literal in
W/Return Literal to W (RETLW), which does as it
is named return with literal in W. Interrupt latency
is constant at three instruction cycles.

External interrupts have to be synchronized with
the four-clock instruction cycle; otherwise there
can be a one instruction cycle jitter. Internal
interrupts are already synchronized. The constant
interrupt latency allows PICs to achieve interrupt-
driven low-jitter timing sequences. An example of
this is a video sync pulse generator. This is no
longer true in the newest PIC models, because
they have a synchronous interrupt latency of three
or four cycles.

The advantages of PIC are: small instruction set
to learn, Reduced Instruction Set Computer
(RISC) architecture, built-in oscillator with
selectable speeds, easy entry level, in-circuit

programming plus in-circuit debugging,
Inexpensive microcontrollers, availability of
processors in Dual in-Line (DIL) package make
them easy to handle for hobby use, wide range of
interfaces including I²C, Serial Peripheral
Interface Bus (SPI), USB, Universal Synchronous
/ Asynchronous Receiver / Transmitter (USART),
Analog-to-Digital (A/D), Programmable
Comparators, Pulse-width Modulation (PWM),
Leisure Information Network (LIN), CAN, Play
Station Portable (PSP) and Ethernet [11].

Peripheral Interface Controller (PIC) Control
Circuit Panel

Control panel with PIC (grey elements in the
center) is shown in Figure 1. The unit consists of
separate elements, from left to right; power
supply, controller, relay units for in- and output.
The main difference from other computers is that
PICs are armored for severe conditions (such as
dust, moisture, heat, cold) and have the facility
for extensive input/output (I/O) arrangements.

These connect the PIC to sensors and actuators.
PICs read limit switches, analog process
variables (such as temperature and pressure),
and the positions of complex positioning systems.
Some use machine vision. On the actuator side,
PICs operate electric motors, pneumatic or
hydraulic cylinders, magnetic relays, solenoids,
or analog outputs. The input/output arrangements
may be built into a simple PIC, or the PIC may
have external I/O modules attached to a
computer network that plugs into the PIC Scan
time.

Peripheral Interface Controller (PIC) Basic
Parts and System Scale

Peripheral Interface Controllers (PICs) used in
larger I/O systems may have peer-to-peer (P2P)
communication between processors, as indicated
in Figure 2. This allows separate parts of a
complex process to have individual control while
allowing the subsystems to co-ordinate over the
communication link. These communication links
are also often used for Human Machine Interface
(HMI) devices such as keypads or PC-type
workstations.

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –16–
http://www.akamaiuniversity.us/PJST.htm Volume 21. Number 2. November 2020 (Fall)

Figure 1: Peripheral Interface Controller (PIC) Control Circuit Panel

Source: Martins, [12].

Figure 2: Peripheral Interface Controller (PIC)

Basic Parts
Source: Micro Controller Broad, [13].

Peripheral Interface Controller (PIC)
Programming

PIC programs are typically written in a special
application on a personal computer, and then
downloaded by a direct-connection cable or over
a network to the PIC, as shown in Figure 3. The
program is stored in the PIC either in battery-
backed-up RAM or some other non-volatile flash
memory. Often, a single PIC can be programmed
to replace thousands of relays. PICs can be
programmed using standards-based programming
languages. A graphical programming notation

called Sequential Function Charts is available on
certain programmable controllers [14].

Figure 3: Peripheral Interface Controller (PIC)

Block Diagram Structure
Source: Micro Controller Broad, [13].

THE DEVELOPMENT OF COMPUTER
PROGRAM FOR THE WELDING INTERFACE
OF THE DEVELOPED WELDING MINI-ROBOT

Algorithm and Flowchart Development

This algorithm describes the processes followed
in the programming of the welding guide (See
Appendix I) used to obtain the welding interface
for the welding robot developed in readiness for
the welding operations carried out as shown in
Figure 4.

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –17–
http://www.akamaiuniversity.us/PJST.htm Volume 21. Number 2. November 2020 (Fall)

Figure 4: Algorithm for the Peripheral Interface Controller (PIC) Operation.

Modeling of the Developed Welding Robot
Operation Interface

Figure 5 is the Graphical user interface using
MATLAB Program for the input of parameters,
such as length of weld in the X-axis, weld position
in the Y-axis and the positioning of the welding
tong in the Z-axis, all to control the operation of
the welding robot developed as shown in Figure 6.

COMPARING THE OPERATIONAL RESULTS
OF THE DEVELOPED WELDING ROBOT WITH
THE MANUAL ARC WELDING

Table 2 shows the various times of weld and
welding speeds at some set lengths of weld for
the welded mild plates of different sizes used as
test specimens for the quality of weld of the
developed welding robot. While Table 3 shows
the various lengths of weld and welding speeds
at some set time of weld for welded mild plates of
different sizes used as test specimens for the
electric arc welding (Manual).

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –18–
http://www.akamaiuniversity.us/PJST.htm Volume 21. Number 2. November 2020 (Fall)

Figure 5: Developed Welding Robot Operation
Interface

Figure 6: Developed Welding Mini-Robot in
Operation.

Table 2: Time, Length of Weld and Welding Speed of Developed Welding Robot.

Welding Operation using the Developed Welding Robot

Length of Weld (mm) 25 50 75 100 125 150

0.5 mm Mild Steel Plate

Time of Weld (s) 5.37 10.94 17.01 21.82 26.53 32.94

Welding Speed (mm/s) 4.66 4.57 4.41 4.58 4.71 4.55

0.6 mm Mild Steel Plate

Time of Weld (s) 5.25 10.89 16.99 21.74 26.45 32.82

Welding Speed (mm/s) 4.76 4.59 4.41 4.60 4.73 4.57

0.7 mm Mild Steel Plate

Time of Weld (s) 5.12 10.77 16.92 21.69 26.33 32.44

Welding Speed (mm/s) 4.88 4.64 4.43 4.61 4.75 4.62

0.8 mm Mild Steel Plate

Time of Weld (s) 5 10.66 16.84 21.64 26.3 32.43

Welding Speed (mm/s) 5.00 4.69 4.45 4.62 4.75 4.63

0.9 mm Mild Steel Plate

Time of Weld (s) 4.88 10.58 16.75 21.42 26.02 32.42

Welding Speed (mm/s) 5.12 4.73 4.48 4.67 4.80 4.63

1.0 mm Mild Steel Plate

Time of Weld (s) 4.7 10.13 16.51 21.3 25.74 31.52

Welding Speed (mm/s) 5.32 4.94 4.54 4.69 4.86 4.76

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –19–
http://www.akamaiuniversity.us/PJST.htm Volume 21. Number 2. November 2020 (Fall)

Table 3: Time, Length of Weld and Welding Speed of Electric Arc Welding Machine.

Welding Operation using Electric Arc Welding

Time of Weld (s) 15 20 25 30 35 40 45

0.5 mm Mild Steel Plate

Length of Weld (mm) 35 45 56 75 88 101 107

Welding Speed (mm/s) 2.33 2.25 2.24 2.50 2.51 2.53 2.38

0.6 mm Mild Steel Plate

Length of Weld (mm) 45 53 61 78 92 107 135

Welding Speed (mm/s) 3.00 2.65 2.44 2.60 2.63 2.68 3.00

0.7 mm Mild Steel Plate

Length of Weld (mm) 46 56 67 95 106 117 148

Welding Speed (mm/s) 3.07 2.80 2.68 3.17 3.03 2.93 3.29

0.8 mm Mild Steel Plate

Length of Weld (mm) 62 88 114 123 144 165 174

Welding Speed (mm/s) 4.13 4.40 4.56 4.10 4.11 4.13 3.87

0.9 mm Mild Steel Plate

Length of Weld (mm) 65 97 129 158 175 184 192

Welding Speed (mm/s) 4.33 4.85 5.16 5.27 5.00 4.60 4.27

1.0 mm Mild Steel Plate

Length of Weld (mm) 70 102 134 165 180 187 195

Welding Speed (mm/s) 4.67 5.10 5.36 5.50 5.14 4.68 4.33

Table 2 indicates, for developed welding robot,
welding speed range for 0.5 mm thick plate,
(4.409-4.655) mms-1; 0.6 mm mild steel plate
(4.414-4.762) mms-1; 0.7 mm plate, (4.433-4.883)
mms-1 ; 0.8 mm plate (4.454-5.000) mms-1; 0.9
mm mild steel plate, (4.478-5.123) mms-1 and for
1.0 mm mild steel plate, (4.543-5.319) mms-1.
While for manual arc welding, Table 3 indicates,
welding speed range of (2.330-2.517) mms-1 for
0.5 mm mild steel; (2.440-3.000) mms-1 for 0.6
mm mild steel plate; (2.680-3.289) mms-1 for 0.7
mm plate but for thicker mild steel plates 0.8 mm -
1.0 mm, the welding speeds appreciated. For 0.8
mm plate, the welding speed ranges from (3.867-
4.560) mms-1; for 0.9 mm plate, (4.267-5.267)
mms-1 and for 1.0 mm plate, (4.333-5.500) mms-
1.

Table 2 also indicates, for developed welding
robot, welding time range for 0.5 mm thick plate,
(5.37-32.94) s; 0.6 mm mild steel plate (5.25-
32.82) s; 0.7 mm plate, (5.12-32.44) s; 0.8 mm
plate (5-32.43) s; 0.9 mm mild steel plate, (4.88-
32.42) s and for 1.0 mm mild steel plate, (4.7-
31.52) s. while for manual arc welding, Table 3
also indicates, for electric arc welding (manual),
welding time range of (15-45) s for 0.5 mm thick
plate to 1.0 mm mild steel plate.

CONCLUSION

In conclusion, the results of the developed
welding program for the welding interface of
welding mini-robot when compared with the
manual electric arc welding indicated that welding
with the developed welding mini-robot will reduce
the production cost and increase the quality as
well as the reliability of weld during welding
processes.

REFERENCES

1. Kah, P., M Shrestha, E. Hiltunen, and J.

Martikainen. 2015. “Robotic Arc Welding Sensors
and Programming in Industrial Applications”.
International Journal of Mechanical and Materials
Engineering. 10(13): 1-16.

2. Ross, L.T., S.W. Fardo, J.W. Masterson, and R.L.
Towers. 2010. Robotics: Theory and Industrial
Applications. p. 47 Goodheart Willocx Company:
Chicago, IL.

3. Chen, S.B, and J. Wu. 2008. “Intelligentized
Technology for Arc Welding Dynamic Process”.
LNEE. 29. Springer: Heidelberg, Germany.

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –20–
http://www.akamaiuniversity.us/PJST.htm Volume 21. Number 2. November 2020 (Fall)

4. Chen, S.B. 2007. “On the Key Intelligentized
Technologies of Welding Robot”. LNCIS. 362:105–
116.

5. Cary, H.B. and S.C. Helzer. 2011. Modern Welding
Technology. Prentice Hall: Saddle Hill, NJ.

6. Hong, T.S., M. Ghobakhloo, and W. Khaksar.
2014. “Robotic Welding Technology in Access”.
https://www.researchgate.net/publication/28595126. June
20, 2020.

7. Robot Welding Company. 2013. “Benefits of
Robotic Welding”. [Online].
http://www.robotwelding.co.uk/benefits-of-robot-welding.html.
Accessed 20 June, 2020.

8. Robert, G. 2013. “Top 5 Advantages of Robotic
Welding”. Robotiq. [Online].
http://blog.robotiq.com/bid/63115/Top-5-Advantages-of-
Robotic-Welding. 20 June, 2020.

9. Ismara, K.I. and E. Prianto. 2020. “Safety
Education Management in Welding Robotic
Laboratory”. J. Phys.: Conf. Ser. 1446 012061: 1-6.

10. Cliton, A. 1984. “Programmable Logical Controller”.
University of Coimbra, Thesis.

11. Crispin, A. 1997. Programmable Logic Controller
and their Engineering Application, 2nd Edition.
McGraw-Hill Publishing: London, UK.

12. Martins, L. 2012. PIC Microcontroller Embedded
Systems. Hadassah College: Jerusalem, Israel.

13. Micro Controller Broad. 2015. “Peripheral
Interface Controller (PIC) Basic Parts and PIC

Block Diagram Structure. www.ranksays.com.

14. Pires, J.N. and J.M.G. Sá da Costa. 1999.
“Programming Robotic Manufacturing Cells”.
University of Reading: London, UK.

ABOUT THE AUTHORS

Dr. Oladebeye Dayo Hephzibah is a Lecturer in
the Department of Mechanical Engineering,
Federal Polytechnic, Ado-Ekiti. He holds a Ph.D.
degree in Mechanical Engineering from the
Federal University of Technology Akure. His
research interests are in robotic and mechanical
engineering.

Prof. Adejuyigbe Samuel Babatope is a
Professor in the Mechatronics Engineering
Department, Federal University, Oye-Ekiti. He
holds a Ph.D. in Production Engineering. His
research interests are in Computer Aided

Engineering/Manufacture, Artificial Intelligence
and Engineering Management.

Dr. Olorunnishola Akim Abayomi Gideon, is a
Lecturer in the Department of Mechanical
Engineering, Federal Polytechnic, Ado-Ekiti. He
holds a Ph.D. degree in Mechanical Engineering
(Applied thermo-fluid option) from the Federal
University of Technology Akure. His research
interests are in mechanical engineering,
renewable energy and energy efficiency and
automotive engineering.

APPENDIX I

WELDING INTERFACE G-CODE

Public Class Form1

 Dim com3 As IO.Ports.SerialPort

 Dim portnum As Integer = 0

 Dim strvalue As Integer

 Dim value As Short

 Dim valuet As Integer

 Dim valuet2 As Integer

 Dim utimer1 As Short

 Dim saveweldp As Integer = 0

 Dim saveweldp2 As Integer = 0

 Dim tempv As Integer

 Dim tempv2 As Integer

 Dim done As Integer = 0

 Dim realvalue As Integer

 Dim valuep As Integer = 0

 Dim valueup As Integer = 0

 Private Sub Form1_Load(ByVal sender As

System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

 Show()

 Button1.Enabled = False

 Button2.Enabled = False

 Button3.Enabled = False

 Button6.Enabled = False

 Button7.Enabled = False

 Button8.Enabled = False

 Button10.Enabled = False

 Button11.Enabled = False

 Button12.Enabled = False

 Button13.Enabled = False

 Button14.Enabled = False

 Button15.Enabled = False

 Button16.Enabled = False

 TrackBar1.Enabled = False

 TrackBar2.Enabled = False

 TextBox1.Enabled = False

redo:

System.Windows.Forms.Application.DoEvents()

 If portnum = 0 Then GoTo redo

 Button1.Enabled = True

 Button2.Enabled = True

 Button3.Enabled = True

 Button6.Enabled = True

 Button7.Enabled = True

 Button8.Enabled = True

 Button10.Enabled = True

http://www.akamaiuniversity.us/PJST.htm
https://www.researchgate.net/publication/28595126
http://www.robotwelding.co.uk/benefits-of-robot-welding.html
http://blog.robotiq.com/bid/63115/Top-5-Advantages
http://www.ranksays.com/

The Pacific Journal of Science and Technology –21–
http://www.akamaiuniversity.us/PJST.htm Volume 21. Number 2. November 2020 (Fall)

 Button11.Enabled = True

 Button12.Enabled = True

 Button13.Enabled = True

 Button14.Enabled = True

 Button15.Enabled = True

 Button16.Enabled = True

 TrackBar1.Enabled = True

 TrackBar2.Enabled = True

 TextBox1.Enabled = True

check:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

System.Windows.Forms.Application.DoEvents()

 strvalue = com3.ReadByte()

System.Windows.Forms.Application.DoEvents()

 TextBox4.Text = TextBox4.Text &

strvalue & " "

System.Windows.Forms.Application.DoEvents()

 End If

System.Windows.Forms.Application.DoEvents()

 GoTo check

 End Sub

 Private Sub TrackBar1_ValueChanged(ByVal

sender As Object, ByVal e As System.EventArgs)

Handles TrackBar1.ValueChanged

 TextBox2.Text = TrackBar1.Value & "

mm"

 Button2.Enabled = True

 End Sub

 Private Sub TrackBar2_ValueChanged(ByVal

sender As Object, ByVal e As System.EventArgs)

Handles TrackBar2.ValueChanged

 TextBox3.Text = (TrackBar2.Value * 2)

& " mm"

 done = 0

 Button3.Enabled = True

 Button16.Enabled = True

 End Sub

 Private Sub Button6_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs)

Handles Button6.Click

 If (TextBox5.Text = "0") And

(TextBox6.Text = "0") Then Exit Sub

 If TextBox5.Text = TextBox6.Text Then

Exit Sub

 If TextBox5.Text > TextBox6.Text Then

Exit Sub

 Dim holder As Integer

 holder = TextBox1.Text

 Do While holder <> 0

 Call process3()

 Call process3()

 Call process1()

 Call process2()

 holder = holder - 1

 Loop

 End Sub

 Private Sub Button7_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs)

Handles Button7.Click

 Button7.Enabled = False

 valueup = 1

 Button7.Enabled = True

 End Sub

 Private Sub Button9_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs)

Handles Button9.Click

 On Error GoTo errorcode

 portnum = InputBox("enter comport

number", , 1,)

 com3 = _

 My.Computer.Ports.OpenSerialPort("COM" &

portnum, 2400)

 com3.Encoding =

System.Text.Encoding.Default

 Exit Sub

errorcode:

 If portnum = "0" Then End

 MsgBox("invalid port number")

 End

 End Sub

 Private Sub Button2_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs)

Handles Button2.Click

 Button2.Enabled = False

 valuet = TrackBar1.Value

 valuet = valuet * 32768

 valuet = valuet / 290

 tempv = valuet

 If valuet >= saveweldp Then

 valuet = valuet - saveweldp

 com3.Write(Chr(3))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

check:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

 strvalue = com3.ReadByte()

 TextBox4.Text = TextBox4.Text

& strvalue & " "

 GoTo check2

 End If

 GoTo check

 Loop

 Timer1.Enabled = False

checkb:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

 strvalue = com3.ReadByte()

 TextBox4.Text = TextBox4.Text

& strvalue & " "

 GoTo check2b

 End If

 GoTo checkb

check2b:

 If strvalue = 66 Then

 MsgBox(" busy")

 Exit Sub

 End If

 saveweldp = tempv

 GoTo proceed

 End If

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –22–
http://www.akamaiuniversity.us/PJST.htm Volume 21. Number 2. November 2020 (Fall)

proceed:

 valuet2 = 0

recheck:

 If valuet >= 256 Then

 valuet2 = valuet2 + 1

 valuet = valuet - 256

 GoTo recheck

 End If

 com3.Write(Chr(valuet))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 com3.Write(Chr(valuet2))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 End Sub

 Private Sub Button3_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs)

Handles Button3.Click

 Button3.Enabled = False

 Call process3()

 Call process3()

 valuet = TrackBar2.Value * 2

 valuet = valuet * 50176

 valuet = valuet / 480

 tempv2 = valuet

 If valuet >= saveweldp2 Then

 valuet = valuet - saveweldp2

 com3.Write(Chr(2))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

check:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

 strvalue = com3.ReadByte()

 TextBox4.Text = TextBox4.Text

& strvalue & " "

 GoTo check2

 End If

 GoTo check

 Loop

 Timer1.Enabled = False

checkb:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

 strvalue = com3.ReadByte()

 TextBox4.Text = TextBox4.Text

& strvalue & " "

 GoTo check2b

 End If

 GoTo checkb

check2b:

 If strvalue = 66 Then

 MsgBox(" busy")

 Exit Sub

 End If

 saveweldp2 = tempv2

 GoTo proceed

 End If

proceed:

 done = 1

 realvalue = saveweldp2

 valuet2 = 0

recheck:

 If valuet >= 256 Then

 valuet2 = valuet2 + 1

 valuet = valuet - 256

 GoTo recheck

 End If

 com3.Write(Chr(valuet))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 com3.Write(Chr(valuet2))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 End Sub

 Private Sub Button1_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs)

Handles Button1.Click

 Button1.Enabled = False

 valuet = 1

 com3.Write(Chr(valuet))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

check:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

 strvalue = com3.ReadByte()

 TextBox4.Text = TextBox4.Text &

strvalue & " "

 GoTo check2

 End If

 GoTo check

check2:

 If strvalue = 42 Then

 MsgBox(" busy")

 Button1.Enabled = True

 Exit Sub

 End If

 saveweldp = 0

 saveweldp2 = 0

 Button1.Enabled = True

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –23–
http://www.akamaiuniversity.us/PJST.htm Volume 21. Number 2. November 2020 (Fall)

 End Sub

 Private Sub Timer1_Tick(ByVal sender As

System.Object, ByVal e As System.EventArgs)

Handles Timer1.Tick

 utimer1 = 1

 End Sub

 Private Sub Button8_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs)

Handles Button8.Click

 Button8.Enabled = False

 valuep = 1

 Button8.Enabled = True

 End Sub

 Private Sub Button4_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs)

Handles Button4.Click

 If done = 1 Then

 TextBox5.Text = realvalue

 End If

 End Sub

 Private Sub Button5_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs)

Handles Button5.Click

 If done = 1 Then

 TextBox6.Text = realvalue

 End If

 End Sub

 Private Sub Button10_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs)

Handles Button10.Click

 Button10.Enabled = False

 valuet = 4

 com3.Write(Chr(valuet))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

check:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

 strvalue = com3.ReadByte()

 TextBox4.Text = TextBox4.Text &

strvalue & " "

 GoTo check2

 End If

 GoTo check

check2:

 If strvalue = 66 Then

 MsgBox(" busy")

 Button10.Enabled = True

 Exit Sub

 End If

 valuet = 250

 valuet2 = 0

recheck:

 If valuet >= 256 Then

 valuet2 = valuet2 + 1

 valuet = valuet - 256

 GoTo recheck

 End If

 com3.Write(Chr(valuet))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 com3.Write(Chr(valuet2))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 Button10.Enabled = True

 End Sub

 Private Sub Button11_Click(ByVal sender

As System.Object, ByVal e As

System.EventArgs) Handles Button11.Click

 Button11.Enabled = False

 valuet = 7

 com3.Write(Chr(valuet))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

check:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

 strvalue = com3.ReadByte()

 TextBox4.Text = TextBox4.Text &

strvalue & " "

 GoTo check2

 End If

 GoTo check

check2:

 If strvalue = 66 Then

 MsgBox(" busy")

 Button11.Enabled = True

 Exit Sub

 End If

 valuet = 250

 valuet2 = 0

 Loop

 Timer1.Enabled = False

check:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

 strvalue = com3.ReadByte()

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –24–
http://www.akamaiuniversity.us/PJST.htm Volume 21. Number 2. November 2020 (Fall)

 TextBox4.Text = TextBox4.Text &

strvalue & " "

 GoTo check2

 End If

 GoTo check

check2:

 If strvalue = 66 Then GoTo xyz

 valuet = TextBox6.Text - saveweldp2

 valuet2 = 0

recheck:

 If valuet >= 256 Then

 valuet2 = valuet2 + 1

 valuet = valuet - 256

 GoTo recheck

 End If

 com3.Write(Chr(valuet))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 com3.Write(Chr(valuet2))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 End Sub

 Public Sub process2()

xyz:

 If valuep = 1 Then Call processpause()

 If valueup = 1 Then Call

processunpause()

 com3.Write(Chr(5))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

check:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

 strvalue = com3.ReadByte()

 TextBox4.Text = TextBox4.Text &

strvalue & " "

 GoTo check2

 End If

 GoTo check

check2:

 If strvalue = 66 Then GoTo xyz

 valuet = TextBox6.Text - saveweldp2

 valuet2 = 0

recheck:

 If valuet >= 256 Then

 valuet2 = valuet2 + 1

 valuet = valuet - 256

 GoTo recheck

 End If

 com3.Write(Chr(valuet))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 com3.Write(Chr(valuet2))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 End Sub

 Public Sub process3()

 com3.Write(Chr(8))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

check:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

 strvalue = com3.ReadByte()

 TextBox4.Text = TextBox4.Text &

strvalue & " "

 Exit Sub

 End If

 GoTo check

 End Sub

 Public Sub process4()

 com3.Write(Chr(9))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

check:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

 strvalue = com3.ReadByte()

 TextBox4.Text = TextBox4.Text &

strvalue & " "

 Exit Sub

 End If

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –25–
http://www.akamaiuniversity.us/PJST.htm Volume 21. Number 2. November 2020 (Fall)

 GoTo check

 End Sub

 Private Sub Button12_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs)

Handles Button12.Click

 Button12.Enabled = False

 Call process3()

 Button12.Enabled = True

 End Sub

 Private Sub Button13_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs)

Handles Button13.Click

 Button13.Enabled = False

 Call process4()

 Button13.Enabled = True

 End Sub

 Public Sub process5()

xyz:

 com3.Write(Chr(4))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

check:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

 strvalue = com3.ReadByte()

 TextBox4.Text = TextBox4.Text &

strvalue & " "

 GoTo check2

 End If

 GoTo check

check2:

 If strvalue = 66 Then GoTo xyz

 valuet = 250

 valuet2 = 0

recheck:

 If valuet >= 256 Then

 valuet2 = valuet2 + 1

 valuet = valuet - 256

 GoTo recheck

 End If

 com3.Write(Chr(valuet))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 com3.Write(Chr(valuet2))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 End Sub

 Public Sub process6()

xyz:

 com3.Write(Chr(7))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

check:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

 strvalue = com3.ReadByte()

 TextBox4.Text = TextBox4.Text &

strvalue & " "

 GoTo check2

 End If

 GoTo check

check2:

 If strvalue = 66 Then GoTo xyz

 valuet = 250

 valuet2 = 0

recheck:

 If valuet >= 256 Then

 valuet2 = valuet2 + 1

 valuet = valuet - 256

 GoTo recheck

 End If

 com3.Write(Chr(valuet))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 com3.Write(Chr(valuet2))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 End Sub

 Private Sub Button14_Click(ByVal sender

As System.Object, ByVal e As

System.EventArgs) Handles Button14.Click

 Button14.Enabled = False

 valuet = 4

 com3.Write(Chr(valuet))

 utimer1 = 0

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –26–
http://www.akamaiuniversity.us/PJST.htm Volume 21. Number 2. November 2020 (Fall)

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

check:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

 strvalue = com3.ReadByte()

 TextBox4.Text = TextBox4.Text &

strvalue & " "

 GoTo check2

 End If

 GoTo check

check2:

 If strvalue = 66 Then

 MsgBox(" busy")

 Button14.Enabled = True

 Exit Sub

 End If

 valuet = 6000

 valuet2 = 0

recheck:

 If valuet >= 256 Then

 valuet2 = valuet2 + 1

 valuet = valuet - 256

 GoTo recheck

 End If

 com3.Write(Chr(valuet))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 com3.Write(Chr(valuet2))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 Button14.Enabled = True

 End Sub

 Public Sub processpause()

 com3.Write(Chr(10))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

check:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

 strvalue = com3.ReadByte()

 TextBox4.Text = TextBox4.Text &

strvalue & " "

 Exit Sub

 End If

 GoTo check

 valuep = 0

 Call process4()

 Call process4()

 End Sub

 Public Sub processunpause()

 com3.Write(Chr(11))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

check:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

 strvalue = com3.ReadByte()

 TextBox4.Text = TextBox4.Text &

strvalue & " "

 Exit Sub

 End If

 GoTo check

 valueup = 0

 Call process3()

 Call process3()

 End Sub

 Private Sub Button16_Click(ByVal sender

As System.Object, ByVal e As

System.EventArgs) Handles Button16.Click

 Button16.Enabled = False

 valuet = TrackBar2.Value * 2

 valuet = valuet * 50176

 valuet = valuet / 480

 tempv2 = valuet

 If valuet >= saveweldp2 Then

 valuet = valuet - saveweldp2

 com3.Write(Chr(2))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

check:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

 strvalue = com3.ReadByte()

 TextBox4.Text = TextBox4.Text

& strvalue & " "

 GoTo check2

 End If

 GoTo check

check2:

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –27–
http://www.akamaiuniversity.us/PJST.htm Volume 21. Number 2. November 2020 (Fall)

 If strvalue = 66 Then

 MsgBox(" busy")

 Exit Sub

 End If

 saveweldp2 = tempv2

 GoTo proceed

 End If

 If valuet < saveweldp2 Then

 valuet = saveweldp2 - valuet

 com3.Write(Chr(5))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

checkb:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

 strvalue = com3.ReadByte()

 TextBox4.Text = TextBox4.Text

& strvalue & " "

 GoTo check2b

 End If

 GoTo checkb

check2b:

 If strvalue = 66 Then

 MsgBox(" busy")

 Exit Sub

 End If

 saveweldp2 = tempv2

 GoTo proceed

 End If

proceed:

 done = 1

 realvalue = saveweldp2

 valuet2 = 0

recheck:

 If valuet >= 256 Then

 valuet2 = valuet2 + 1

 valuet = valuet - 256

 GoTo recheck

 End If

 com3.Write(Chr(valuet))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 com3.Write(Chr(valuet2))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 End Sub

 Private Sub Button15_Click(ByVal sender

As System.Object, ByVal e As

System.EventArgs) Handles Button15.Click

 Button15.Enabled = False

 valuet = 7

 com3.Write(Chr(valuet))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

check:

System.Windows.Forms.Application.DoEvents()

 If com3.BytesToRead >= 1 Then

 strvalue = com3.ReadByte()

 TextBox4.Text = TextBox4.Text &

strvalue & " "

 GoTo check2

 End If

 GoTo check

check2:

 If strvalue = 66 Then

 MsgBox(" busy")

 Button15.Enabled = True

 Exit Sub

 End If

 valuet = 3000

 valuet2 = 0

recheck:

 If valuet >= 256 Then

 valuet2 = valuet2 + 1

 valuet = valuet - 256

 GoTo recheck

 End If

 com3.Write(Chr(valuet))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 com3.Write(Chr(valuet2))

 utimer1 = 0

 Timer1.Enabled = True

 Do While utimer1 = 0

System.Windows.Forms.Application.DoEvents()

 Loop

 Timer1.Enabled = False

 Button15.Enabled = True

 End Sub

End Class

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –28–
http://www.akamaiuniversity.us/PJST.htm Volume 21. Number 2. November 2020 (Fall)

SUGGESTED CITATION

Oladebeye, D.H., S.B. Adejuyigbe, and A.A.G.
Olorunnishola. 2020. “The Development of
Computer Program for the Welding Interface of
the Developed Welding Mini-Robot”. Pacific
Journal of Science and Technology. 21(2):12-28.

Pacific Journal of Science and Technology

http://www.akamaiuniversity.us/PJST.htm
http://www.akamaiuniversity.us/PJST.htm

