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ABSTRACT 
 
In this paper, attempts were made to build an 
appropriate model for the prediction of chaotic 
time series by using Langevin equation. Langevin 
equation is a linear stochastic differential equation 
related to the world of time series and is called 
Ornstein-Uhlenbeck process. The Ornstein-
Uhlenbeck process is a Gaussian process with 
autocovariance and which can be transformed 
into state  dependent time series model. The state 
dependent model can be reduced to an 
autoregressive integrated moving average 
(ARIMA) process or an autoregressive moving 
average (ARMA) process. The study of chaotic 
models is fascinating and this paper may 
contribute to the understanding of random 
behavior in time series modelling.   
 

(Keywords: Langevin equation, stochastic differentia 
equation, Ornstein-Uhlenbeck process, dependent time 

series model) 

 
 
INTRODUCTION 
 
Many systems exhibit large changes in output 
corresponding to very small changes in initial 
conditions. Such systems are said to display 
chaotic behavior (Guttorp, 1995). Chaotic 
behavior exists in many natural systems, such 
as weather and climate and also occurs 
spontaneously in some systems with artificial 
components such as road traffic.  
 
Chaos theory has provided a new tool in the 
understanding of behaviors that arises from 
physical systems and has applications in 
meteorology, physics, environmental science, 
computer science, engineering, economics and 
finance. The paradigm of chaos was introduced 
by Lorenz (1963), with several attempts having 
been made in several fields to demonstrate 
basic characteristics of chaotic behavior, such as 

the irregularity of motion, unpredictability and 
sensitivity to initial conditions (Takens, 1981).  
  
Chaos theory as a branch of mathematics 
focuses on the behavior of dynamical systems 
that are highly sensitive to initial conditions. 
Chaos theory is an interdisciplinary theory 
stating that within the apparent randomness of 
chaotic complex systems, there are underlying 
patterns, constant feedback loops, repetition, 
self-similarity, fractals, self-organization, and 
reliance on programming at the initial point 
known as sensitive dependence on initial 
conditions.  
 
Chaos theory has shown that complex erratic 
behavior in physical systems sensitive to initial 
conditions will generally magnify through time 
rather than die out. This is exemplified in the so-
called butterfly effect, whereby a butterfly 
flapping its wings could produce an effect that is 
eventually transformed into a tropical storm. 
The sensitivity to initial conditions (that is, the 
rate at which a small perturbation is magnified) 
is measured by the Lyapunov exponent 
(Chatfield, 2004). These behaviors can be 
studied through analysis of a chaotic 
mathematical model, or through analytical 
techniques such as recurrence plots and 
Poincare maps. 
 
Taken (1981) has shown that a chaotic 
dynamical system can be accurately 
reconstructed from a sequence of observations 
of the state of a dynamical system. Differential 
equations are used in sciences to model 
dynamic processes.  They provided the basic 
simple model of any phenomenon in which one 
or more variables depend continuously on time 
without any random influences (Glendinning, 
1994). One of the most exciting developments 
in recent theory of differential equations is the 
discovery that relatively simple differential 
equations can have solutions which are much 
more complicated than periodic and quasi 
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periodic solutions.  A differential equation is said 
to be chaotic if there are bounded solutions 
which are neither periodic nor quasi-periodic and 
which diverge from each other locally 
(Glendinning, 1994).  
 
The existence of chaotic solutions has had a 
profound effect on thinking in many disciplines.  
One immediate corollary of the local divergence 
of nearby solutions is that one losses predictive 
power in practical situations.  The solutions of 
differential equations are deterministic in the 
sense that if the initial conditions are precisely 
specified then the solution is completely 
determined and so, in principle one should be 
able to predict the value of the solution at some 
later time ( Glendinning, 1994). Of course in 
practice, the initial condition can only be known 
to some finite precision and if the equation is 
chaotic, information about the system rapidly 
may be lost, since solution through the 
approximate initial condition does not stay close 
to the desired solution.  
 
In Hooker (2009), recent research has seen a 
significant increase in interest in fitting nonlinear 
differential equation to data. Many systems of 
differential equations used to describe real world 
phenomena are developed from first-principles 
approaches by a combination of conservation 
laws and rough guesses. Such a priori modelling 
has led to proposed models that mimic the 
qualitative behavior of observed systems, but 
have poor quantitative agreement with empirical 
measurements. The problem of modeling 
dynamics of nonlinear systems has become an 
active field due to its potential applications 
especially in finance and engineering and is 
viewed as a realization from stochastic process 
of a nonlinear dynamical system. In the 
stochastic formulation, the dynamic behavior is 
modeled as a stochastic differential equation. 
 
Stochastic differential equations can be 
understood as deterministic differential 
equations which are perturbed by random noise. 
The term stochastic differential equation was 
actually introduced by Bernštein in the limiting 
study of a sequence of Markov chains arising in 
a stochastic difference scheme (Karatzas and 
Shreve , 1994). Since the early work of Itŏ and 
Gihman, the interest in the methodology and the 
mathematical theory of stochastic differential 
equations has enjoyed remarkable successes. 
The constructive and intuitive nature of the 
concept, as well as its strong physical appeal 

has been responsible for its popularity among 
applied sciences.    
 
  
MATERIALS AND METHODS 
 
Chaotic time series is a complex nonlinear 
dynamical system that is specified by a state 
vector  and a function   which describes how the 
system evolves over time. The state vector is a 
list of numbers which may change as time 
progresses and is a numerical description of the 
current configuration of the system. The 
function is a rule which shows how the system 
changes over time. The mathematical 
representation is usually a set of dynamical 
differential equations, with unique solutions. The 
main idea is evident in the simplest possible 
system, the doubling map, sometimes called the 
one-sided Bernoulli shift: 
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or by the logistic map, sometimes called the 
quadratic map: 
 

40             )1( 1 −= +  nnn  
     (2) 
 
 
Equations (1) and (2) are examples of what 
mathematicians would call a difference 
equation, but which statisticians would probably 
regard as a deterministic time series. Of course 
in practice, the initial condition can only be 
known to some finite precision and if the 
equation is chaotic, information about the 
system rapidly may be lost, since solution 
through the approximate initial condition does 
not stay close to the desired solution. In Hong 
(1996), a random time series is a stochastic 
process in discrete time index.  
 
Roughly speaking, a random time series under 
time reversal can be a deterministic sequence, 
that is, iterates of a chaotic map. On the other 
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hand, some iterates of a chaotic map can be a 
sample sequence from a random time series 
under time reversal. These links may be helpful 
in understanding the relationship between the 
random behavior of time series in probability and 
in chaos. There may be some advantage in 
considering the general linear stochastic 
differential equation.  
 
Stochastic process in continuous times is 
defined as solution of stochastic differential 
equation.   It is a special class of stochastic 
differential equations which have an explicit 
solution in terms of the coefficient functions of 
the underlying Brownian motion. Chaotic 
processes are random processes that can be 
described mathematically as a set of dynamical 
differential equations. Consider the deterministic 
differential equation: 
 

,))(,()( dttxtatdx =      0)0( xx =    (3) 

 
The easiest way to introduce randomness in this 
equation is to randomize the initial condition. The 

solution )(tx  then becomes a stochastic process 

:],0[,( Ttt 
 

 

dttad tt ),( =        )()(0  =
 
(4) 

 
Equation (4) is a random differential equation. 
Random differential equations (Mikosch, 2008) 
can be considered as deterministic differential 
equations with a perturbed initial condition. For 
our purpose, the randomness in the differential 
equation is introduced through an additional 
random noise term: 
 

,),(),( tttt dtbdttad +=        

)()(0  =                        (5) 

 

In (5), )0,( = tt denotes Brownian motion, 

and ),( and ),( xtbxta are deterministic functions. 

The solution X, if it exists, is then a stochastic 
process.  
 

The randomness of  ],0[,( Ttt =  results, 

on one hands, from the initial condition, and on 
the other hand, from the noise generated by 
Brownian motion. Since Brownian motion does 
not have differentiable sample paths, we can 

propose (5) as an ôIt  calculus by interpreting it 

as the stochastic integral equation: 
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Equation (6) is an ôIt  stochastic differential 

equation. Brownian motion is the driving process 

of the ôIt  stochastic differential equation 

(Miskosch, 2008). There are two kinds of solution 
to (6) called strong and weak solutions. A strong 
solution to (6) is a stochastic process 

],0[,( Ttt = , based on the path of the 

underlying Brownian motion. Weak solutions, 
Chung and Williams (1990) are sufficient in order 
to determine the distributional characteristics 

of ],0[,( Ttt = ), such as the expectation, 

variance and covariance functions of the process.  
 

A strong or weak solution X of the ôIt  stochastic 

differential equation (6) is called diffusion. In 
particular, (6) is a diffusion process if we take 

.1),(  and  0),( == xtbxta  

 

The solution to an ôIt  stochastic differential 

equation can also be derived as the solution of a 
deterministic partial differential equation. By 
considering the Ornstein-Uhlebeck process, we 
have another linear stochastic differential 
equation   
 

],0[ Tt                                (7) 

 
Langevin (1908) studied this kind of stochastic 
differential equation to model the velocity of a 
Brownian particle. In the physical literature, the 
random forcing in (7) is called additive noise 
which is an adequate description of this 
phenomenon. This time series model can be 
considered as a discrete analogue of the solution 
to the Langevin equation (7) and the Langevin 
equation is a linear itô stochastic differential 
equation. To solve (7), the following 
transformation of X is convenient: 
 

t
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We have to note that both process X and Y 
satisfy the same initial condition that: 
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00 =                               (9) 

 
Hence the Langevin stochastic differential 
equations in (7) is an Ornstein-Uhlenbeck process 
given as: 
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Equation (10) is actually a solution to (7). The 
Ornstein-Uhlenbeck process in (10) is a Gaussian 

process. The stochastic process tX follows a 

random walk and can be represented as:  
 

ttt ZXX +=+ 1                              (11) 

 

with a constant  c   and white noise ta .  If c  is 

not zero then the variables,  1−− tt XX = tac +   

have a non-zero mean and is called a random 
walk with a drift. The state space model sets out 
to capture the salient features of the time series 

and these are apparent from the nature of the 
series.  The state space model can be reduced to 
an autoregressive integrated moving average 
(ARIMA) process or an autoregressive moving 
average (ARMA) process. ARIMA (p,d,q) models 
are typically  parsimonious model. ARIMA model 
selection is based on the premise that the ACF 
and the related statistics can be accurately 
estimated and are stable over time. By adopting 
Box ~ Jenkins ARIMA (p,d,q) model approach to 
time series analysis, model identification, 
parameter estimation and diagnostic check were 
feasible.  
 
 
RESULTS 
 
The empirical data used in this study is the 
claims submitted to the secretariat of the Nigeria 
Insurance Association (NIA) for the period 2007 
and is as shown in Table 1.  The examination of 
the time plot of Table 1 revealed greater 
variability of claims as shown in Figure 1. 

 
 

Table 1:  Insurance Claims Portfolio 

Jan 4469654, 991698, 1243344, 513000, 522473, 3800000, 744538, 610536, 900000, 573750, 2025000, 570978, 542400, 2592000, 
574536, 705682, 719059, 933038, 696173, 665766, 581487, 700000, 750000, 661000                

Feb 684068, 750988, 3401510, 1389917, 1113524, 623396, 3036377, 2334479, 2208789, 1107032, 1050000, 691572, 612716, 
537750, 1072512, 1312500, 838080, 12831900, 10159375, 1516854, 500000, 7000000, 1682558, 1012500 

Mar 1700000, 899965, 513000, 3000000, 1066400, 5772690, 629803, 819500, 1923000, 720000, 1624500, 2183298, 1133930, 
1680120, 1938070, 1163191 

Apr 1091250, 1327784, 3066729, 17093431, 645188, 612000, 586528, 6277603, 864374, 3278926, 1260000, 738000 

May 678000, 577776, 869660, 501785, 777600, 965037, 1260000, 1304394, 1800000, 1083598, 1177808, 1310143, 1298097, 
1968740, 760089, 2700000, 4302997, 1224172, 643204, 1344823, 2588500, 3165761. 

Jun 532010, 1495237, 742808, 724693, 1176641, 7000000, 2109000, 810000, 699510, 531644, 966845, 2618136, 1230618, 3162224, 
1081947, 666750, 1500000, 652500, 529376, 4850000, 878500, 520600, 3298464, 1980000, 679115, 632591, 540000. 

Jul 627838, 723050, 504900, 2263523, 606000, 1729917, 1950000, 704660, 1000000, 2479351, 1417898, 500000, 810000, 1408603, 
1256584, 1620000, 540000, 522969, 717039, 982816, 4250000, 700000. 

Aug 760000, 2353302, 546826, 531451, 823125, 515735, 1364993, 1030228, 1393273, 3244220, 1080000, 1044000, 24400000, 
1075284, 1070244, 1197000, 995663, 761846, 4254817, 1162800, 24579269. 

Sep 1338750, 1338750, 6300000, 3179432, 800650, 891950, 4454095, 2307436, 559558, 559545, 2063844, 2685354, 1246300, 
1245983, 4884223, 857719, 566820, 631125, 1648438, 832733, 3254900, 2061216, 1085797. 

Oct 5235988, 688500, 1411242, 2607147, 1530000, 800000, 1620000, 1067600, 826350, 1982973, 576000, 1381026, 6697192, 
3265331, 3222164, 1238226, 828800, 1657500, 14552619, 1121850, 842387, 728946, 3734997, 1341743, 546950, 1134488, 
544266, 1351500, 562002, 1851600, 1823018, 3054268. 

Nov 1048478, 1625570, 3886258, 3910305, 1313125, 2900000, 600750, 800000, 1026667, 14490580, 563170, 705093, 1792500, 
2153730, 2920459, 643357, 7435587, 542500, 565213, 5178084, 5161160, 2207540, 513359, 746971, 1882850, 2089548, 
680400, 553248, 914973, 1080000, 1346386, 27311939. 

Dec 500000, 1042321, 765000, 1344823, 746971, 1339595, 3134790, 540510, 661500, 671700, 1768000, 3587542, 1051200, 
1303154, 1298996, 544000, 1744652, 3017240, 3865360, 711461, 992062, 515800, 870795, 665000, 675000, 1080000, 3451391, 
524846. 
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Figure 1: Sample Paths for the Claim Portfolio. 

 
 
 
The path of the model as depicted in Figure 1 is 
more of a chaotic situation. There were lots of 
irregularities making it difficult to define the path 
of the process. The series can be understood as 
discretization of stochastic differential equations.  
The sample paths of the process fluctuate wildly 
in contrast to the limiting process of Brownian 
motion which has a continuous sample path. In 
order to avoid such irregular behavior, 
deconvolution of the data in Table 1 was carried 
out using Brownian sample paths, as in Figure 2. 
 
By the examination of the ACF, the PACF, and 
the AIC for claim processes suggests an 
autoregressive model of order 1 as in Table 3. 
 
The S-PLUS package used the Akaike 
information criterion to provide the best fit for an 
autoregressive model to a set of data. The 
correlogram for the ACF and the PACF is as in 
Figures 3 and 4. 
 

The corresponding fitted autoregressive model is:   
  

ttt a++= −1578.036.2  

         (0.066)     (0.0031) 
 
An overall test of model adequacy is provided by 
Ljung-Box chi-squared statistics. These statistics 
also known as the Box-Pierce chi-square 
statistics contain what are known as the 
portmanteau statistics with their associated p-
values.  
 
In fitting the AR (1) model to the structured claims 
data, none of the chi-square values is significant 
at the 5% level. The ARIMA model diagnostic is 
as shown in Figure 5 with various plots produced 
such as the standardized residuals, the ACF of 
the residuals, the PACF of the residuals, and the 
p-values of Ljung-Box Chi-squared statistics.  
 

http://www.akamaiuniversity.us/PJST.htm


The Pacific Journal of Science and Technology               –98– 
http://www.akamaiuniversity.us/PJST.htm                                                Volume 21.  Number 1.  May 2020 (Spring) 

 
Table 3: Sample ACF, PACF and AIC for Claims Portfolio. 

Lag K  
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
10 

 
11 

 
12 

ACF 0.482 0.299 0.207 0.104 0.140 0.060 0.049 0.066 0.058 0.015 0.123 0.053 

PACF 0.482 0.087 0.045 -0.04 0.106 -0.06 0.020 0.033 0.024 -0.06 0.017 0.059 

AIC 0.000 0.340 1.902 3.595 3.120 4.298 6.212 7.978 9.851 11.12 13.06 14.28 
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Figure 3: The Estimated Autocorrelations Function (ACF). 

 
 
Almost all the plots are based on the examination 

of the residuals, ttt yye ˆˆ −= , where tŷ is the 

fitted value, or some function of the residuals.  
 
The rationale is that if the model is satisfactory, 
the residuals, which are estimates of the error 

components tê ,should be uncorrelated at any lag 

and should be approximately normally distributed 
with mean zero and a variance estimated by the 

residual mean square. Thus the AR (1) model 
appears quite adequate. 
 
 
DISCUSSION 
 
The numerical solution of stochastic differential 
equations is a relatively new area of applied 
probability theory with an overviews in Kloeden 
and Platen (1992). 
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Figure 4: The Estimated Partial Autocorrelation Function (PACF). 
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Figure 5:  ARIMA Model Diagnostic for the Claims Portfolio 
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This study described chaotic evolution or 
Insurance claim process over a given time 
period as a Langevin equation. Langevin 
equations are one of the major classes of 
models in the response time domain. The 
Langevin equation is a linear stochastic 
differential equation related to the world of time 
series and is called Ornstein-Uhlenbeck process. 
 
The Ornstein-Uhlenbeck process is a Gaussian 
process with autocovariance and which can be 
transformed into state space time series model. 
The state space model sets out to capture the 
salient features of the time series and these are 
apparent from the nature of the series.  The 
state space model can be reduced to an 
autoregressive integrated moving average 
(ARIMA) process or an autoregressive moving 
average (ARMA) process. For the purpose, the 
study restricted to the numerical solution of the 
stochastic differential equation using   stochastic 
differential equation with multiplicative noise. 
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