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ABSTRACT 
 
In this paper, the authors develop the 
transmission dynamics of the acute and chronic 
hepatitis C virus (HCV) epidemic problem and 
incorporate optimal control strategy for controlling 
the spread of the disease. In order to control the 
spread of the virus, we develop a control strategy 
by applying three control variables such as 
protection, treatment of acute infection and 
treatment of chronic infection to minimize the 
number of acute infected, chronically infected with 
HCV individuals and maximize the number of 
susceptible and recovered individuals. We find the 
necessary conditions for the optimal solution for 
controlling the spread of the virus using 
Pontryagin’s Maximum Principle (PMP). Runge-
Kutta of order four was used for the numerical 
simulation to demonstrate the achievability of the 
control strategies. 
 

 (Keywords: transmission, acute, chronic, hepatitis, 
control, strategy, disease, infection, protection, 

treatment, susceptible, recovered)) 
 
 

INTRODUCTION 
 
Hepatitis C is a liver disease caused by the 
hepatitis C virus (HCV): the virus can cause both 
acute and chronic hepatitis, ranging in severity 
from a mild illness lasting a few weeks to a 
serious, lifelong illness. Hepatitis C is a major 
cause of liver cancer.  
 
The hepatitis C virus is a bloodborne virus: the 
most common modes of infection are through 
exposure to small quantities of blood. This may 
happen through injection drug use, unsafe 
injection practices, unsafe health care, transfusion 
of unscreened blood and blood products, and 
sexual practices that lead to exposure to blood. 
Globally, an estimated 71 million people have 
chronic hepatitis C virus infection (WHO, 2019). A 

significant number of those who are chronically 
infected will develop cirrhosis or liver cancer. 
WHO estimated that in 2016, approximately 399 
000 people died from hepatitis C, mostly from 
cirrhosis and hepatocellular carcinoma (primary 
liver cancer).  
 
Antiviral medicines can cure more than 95% of 
persons with hepatitis C infection, thereby 
reducing the risk of death from cirrhosis and liver 
cancer, but access to diagnosis and treatment is 
low. Hepatitis C virus causes both acute and 
chronic infection. New HCV infections are usually 
asymptomatic. Some persons get acute hepatitis 
which does not lead to a life-threatening disease. 
Around 30% (15–45%) of infected persons 
spontaneously clear the virus within 6 months of 
infection without any treatment. The remaining 
70% (55–85%) of persons will develop chronic 
HCV infection. Of those with chronic HCV 
infection, the risk of cirrhosis ranges between 
15% and 30% within 20 years, (WHO, 2019).  
 
WHO (2019) reported that the incubation period 
for hepatitis C ranges from 2 weeks to 6 months. 
Following initial infection, approximately 80% of 
people do not exhibit any symptoms. Those who 
are acutely symptomatic may exhibit fever, 
fatigue, decreased appetite, nausea, vomiting, 
abdominal pain, dark urine, grey-colored feces, 
joint pain and jaundice (yellowing of skin and the 
whites of the eyes). 
 
New HCV infections are usually asymptomatic, 
few people are diagnosed when the infection is 
recent. In those people who go on to develop 
chronic HCV infection, the infection is also often 
undiagnosed because it remains asymptomatic 
until decades after infection when symptoms 
develop secondary to serious liver damage. HCV 
infection is diagnosed in 2 steps: (i) testing for 
anti-HCV antibodies with a serological test 
identifies people who have been infected with the 
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virus and (ii) if the test is positive for anti-HCV 
antibodies, a nucleic acid test for HCV ribonucleic 
acid (RNA) is needed to confirm chronic infection 
because about 30% of people infected with HCV 
spontaneously clear the infection by a strong 
immune response without the need for treatment. 
Although no longer infected, they will still test 
positive for anti-HCV antibodies.  
 
After a person has been diagnosed with chronic 
HCV infection, they should have an assessment 
of the degree of liver damage (fibrosis and 
cirrhosis). This can be done by liver biopsy or 
through a variety of non-invasive tests. Early 
diagnosis can prevent health problems that may 
result from infection and prevent transmission of 
the virus. A new infection with HCV does not 
always require treatment, as the immune 
response in some people will clear the infection. 
However, when HCV infection becomes chronic, 
treatment is necessary (WHO, 2019). 
 
Most of the HCV related disease burden in 
developed countries has resulted from injection 
drug use, transfusion before donor screening and 
high-risk sexual activity (Alter, 2007).  
 
Aitken et al., (2007) conducted a study of HCV 
infection and reinfection in injecting drug users 
(IDUs), using a much shorter median testing 
interval and more precise ascertainment of 
reinfection. 
 
Kalajdzievska and Li (2011) developed a 
deterministic mathematical model and studied the 
effect of carriers on general infectious diseases. 
They further used their model as a crude 
approximation for the transmission dynamics of 
chronic hepatitis B infection among an adult 
population. Their simulation results revealed that, 
in high HBV prevalence countries, testing and 
increasing awareness of carriers will have a much 
greater impact on the disease burden than 
increasing vaccination rates.   
 
Moffat et al., (2014) developed a mathematical 
model and studied the effect of carriers in the 
transmission of typhoid fever in Kisii town Kenya. 
The numerical results show that reducing the 
typhoid carriers by 9.5% could assist Kisii county 
government in Kenya achieve a typhoid free 
status by 2030.  
 
Several mathematical models of HCV infection 
were developed and analyzed by many 
researchers such as (Dontwi et al., 2010), 

(Elamin, 2013), (Mather and Crofts, 1999), 
(Hanafiah, Groeger, Flaxman and Wiersma, 
2013), (Pollack, 2001), (Pollack, 2001), 
(Vickerman, Hickman and Judd, 2006) and 
(Zeiler, Langlands, Murray and Ritter, 2010).  
 
Echevarria et al., (2015) use a mathematical 
model to predict the impact of a direct-active 
antivirals (DAAs) treatment scale-up on HCV 
prevalence among persons who inject drugs 
(PWID) and the estimated cost in metropolitan 
Chicago using empirical data from three 
epidemiological studies. They show that 
treatment scale-up will reduce the HCV 
prevalence by one-half over 10 years of 
treatment that will cost $(50-77) for 35 per 1,000 
in the overall PWID population. 
 
Natasha, et al., (2011) developed a model of 
HCV transmission and treatment among active 
injecting drug users (IDUs) to determine the 
optimal treatment program strategy over 10 years 
for two baseline chronic HCV prevalence 
scenarios (30% and 45%) with a range of 
maximum annual budgets (₤50,000 – ₤300,000) 
pounds per 1,000 IDUs. Their objectives are to 
minimise the costs of health service and health 
utility losses.  
 
Ainea, Massawe, Makinde and Namkinga (2015) 
considers an optimal control analysis for HCV 
model by incorporating education, health care, 
immunization, screening of immigrants and 

treatment in their model. Their aim is to minimize 

the spread of HCV disease in the community with 
inflows of immigrants and the cost of control 

strategies. Their result show that the effective 

use of optimal screening of immigrants together 
with education, health care, immunization and 

treatment have a significant impact in reducing 
the spread of the disease in the community. 

 

Okosun (2014) consider a deterministic hepatitis 
C virus (HCV) model and study the impact of 

optimal control on the screening of immigrants 
and treatment of HCV on the transmission 

dynamics of the disease in a homogeneous 
population with constant immigration of 

susceptible. They investigate the costs associated 

with each of the strategies by formulating the 
costs function problem as an optimal control 

problem using the Pontryagin’s Maximum 
Principle to solve the optimal control problems. 

Their result shows that the optimal combination 

of treatment of acute-infected and chronic-

http://www.akamaiuniversity.us/PJST.htm


The Pacific Journal of Science and Technology               –113– 
http://www.akamaiuniversity.us/PJST.htm                                                Volume 21.  Number 1.  May 2020 (Spring) 

infected individuals control strategy produced the 
same results as the combination of three control 

strategies (combination of screening of 
immigrants, treatment of acute-infected 

individuals and treatment of chronic-infected 

individuals). 
 

Khan, Zaman and Chohan (2017) present a 
mathematical model for the transmission dynamic 

of the acute and chronic hepatitis B epidemic 
problem and develop an optimal control strategy 

to control the spread of hepatitis B in a 

community by applying three control variables 
such as isolation of infected and non-infected 

individuals, treatment and vaccination to minimize 
the number of acute infected, chronically infected 

with hepatitis B individuals and maximize the 

number of susceptible and recovered individuals. 
Khan, Sail, Imran and Malik (2014) present a 

rigorous mathematical analysis of a deterministic 
model for the transmission dynamics of hepatitis 

C virus using a standard incidence rate. They 
applied two control strategies (vaccination and 

isolation) which are designed to control the 

disease and to reduce the infected population. 
 
Shah, Yeolekar and Shukla (2018) formulated a 
nonlinear Mathematical Model for Hepatitis C 
Virus with vertical transmission and effective 
control on the treatment cost. Numerically, they 
optimize the maximum amount for treatment cost 
paid by the Government and minimum amount of 
treatment paid by the infected individuals that will 
help in decreasing the burden of HCV in the 
population. 
 
Therefore, we extended the work of Abdullahi, 
Momoh, Alhassan and Sajoh (2018) by 
incorporating control parameters into their model 
and optimal control was applied to analyse the 
effectiveness of the control(s) in tackling the 
transmission of the virus.  
 
 
MODEL DESCRIPTION 
 
The model is partitioned into five compartments 
comprises of Susceptible individuals at time t, 

( )S t , Asymptomatic (Acute) HCV infected 

individuals at time t, ( )I t , Diagnosed individuals 

at time t, ( )D t , Chronic HCV infected individuals, 

( )C t  and Recovered individuals, ( )R t , and the 

total population is given as: 

( ) ( ) ( ) ( ) ( ) ( )N t S t I t D t C t R t= + + + +        (1) 

 
It is assumes that the recruitment rate into the 
susceptible population is constant, denoted by 

,  and the movement of individuals who 

recovered from the HCV infection due to loss of 
immunity at a rate  . Susceptible individuals can 

die naturally at a rate  . Susceptible individuals 

acquired the virus following effective contact rate 

 with infected individuals ( ( )I t , ( )D t  or ( )C t ) at 

the rate 
 

( )1 2( ) ( ) ( )

( )

I t D t C t

N t

  


+ +
=   

 
and move to the asymptomatic (acute) 

infected ( )I t  compartment but the movement is 

controlled using sexual protection 1 ( )u t . 1  and 

2  are the modification parameters that assumed 

to reduce the disease transmission for both 
diagnosed and chronic infected individuals in 

comparison to the acute infected individuals ( )I t .  

 

Individuals in ( )I t  can die naturally at a rate   

and as a result of the HCV induced death at a 

rate I . The ( )I t  can further be reduced by 

those that had been diagnosed at a rate  and 

those that progressed to the chronic 
compartment after manifestation of the symptom 
at a rate . The diagnosed population is 

generated by those diagnosed from the 
asymptomatic (acute) infected class (at the 

rate ). While 2 ( )u t  denotes the control on 

treatment of diagnosed individuals and it reduces 

the population at a rate 1  due to the recovery 

from the virus. The diagnosed individuals can die 

due to the HCV infection at a rate D  and 

through naturally death, at a rate  .  

 
The chronic individuals are those that progresses 
from symptomatic compartment as a result of the 
appearance of the symptoms at a rate   and it 

can be reduced when the control on 

treatment 3 ( )u t  is applied on those who are 

chronically infected at a rate 
2.  It can further be 

decreased due to the HCV induced death at a 

rate C  and through natural death at a rate  . 
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Lastly, the recovered population increases due to 
the treatments on both diagnosed and chronic 

individuals at a rate
1  and 2 . But it can be 

reduced due to natural death rate   and those 

who lost immunity after recovery at a rate . Thus 

the model equations are given as: 
 

( )1( ) 1 ( ) ( ( ) ( ) ( )S t u t S t R t S t  =  − − + −   (2) 

 

( ) ( )1( ) 1 ( ) ( ) ( )II t u t S t I t    = − − + + + (3) 

 

( )2 1( ) ( ) ( ) ( )DD t I t u t D t   = − + +   (4) 

 

( )3 2( ) ( ) ( ) ( )CC t I t u t C t   = − + +   (5)  

 

1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )R t u t D t u t C t R t   = + − + (6) 

 
 
 

Table 1: Parameters and Variables of the Model. 
 
Symbols Descriptions Values and References 

  Recruitment rate into the Susceptible pool 100 Okosun & Makinde (2014) 

  Natural death rate 0.00004 Okosun & Makinde (2014) 

I  HCV induced death rate of asymptomatic individuals 0.2201 Assumed 

D  HCV induced death rate of diagnosed individuals 0.0476 Assumed 

C  HCV induced death rate of symptomatic individuals 0.2801 Assumed 

  Transmission coefficient 0.1 Assumed 

1  Modification parameter associated with reduced transmission  
rate by diagnosed infected individuals 

0.3 Assumed 

2  Modification parameter associated with reduced transmission  
rate by symptomatic infected individuals 

0.5 Assumed 

1  Recovery rate of diagnosed individuals 0.13 Okosun & Makinde (2014) 

2  Recovery rate of symptomatic individuals 0.3 Okosun & Makinde (2014) 

  Rate of appearance of symptoms of asymptomatic individuals 0.0588 Assumed 

  Rate of diagnosis (the rate at which asymptomatic individuals 
are made aware of their infection through testing) 

0.5 Okosun &Makinde (2014) 

(0)S  Susceptible individuals at time t 800 Okosun & Makinde (2014) 

(0)I  Acute individuals at time t 10 Okosun & Makinde (2014) 

(0)D  Diagnosed individuals at time t 50 Okosun & Makinde (2014) 

(0)C  Chronic individuals at time t 10 Assumed 

(0)R  Recovered individuals at time t 5   Assumed 
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OPTIMAL CONTROL ANALYSIS 
 
The optimal control problem is formulated for the 
HCV model by introducing into the models (2 – 6), 

time-dependent control variables 1 2(t), (t)u u and 

3 (t)u  in order to determine optimal HCV control 

strategies (Sexual protection and Treatments) 
with minimal implementation cost. 
 
For the optimal control problem of the given 
system, we consider the control 

variables  1 2 3( ) ( ), ( ), ( )u t u t u t u t U=   relative 

to the state variables 

( ), ( ), ( ), ( ), ( )S t I t D t C t R t where control 

variables are bounded and measured with 

1 2 3{ ( , , )U u u u= is Lebesgue measurable on [0, 1], 

0 ( ) 1, [0, ], 1,2,3}.iu t t tf i   =  

 
The objective functional is given as: 
 

1 2 3

22 2
3 31 1 2 2

1 2
, , 0
min

2 2 2

tf

u u u

B uB u B u
J A D A C dt

 
 = + + + +
 
 

     (7) 

 

where tf  is the final time and the 

coefficients 1 2 1 2, , ,A A B B  and 3B  are positive 

weights to balance the factors. The terms 

1A D and 2A C  are the cost of infection while 

2 2
1 1 2 2,B u B u  and 2

3 3B u  are the costs associated with 

1u  (protection), 2u  (treatment of diagnosed 

individuals) and 3u  (treatment of symptomatic 

individuals).  
 

We seek optimal control 1 2 3, ,u u u  such that: 

 

 * * *
1 2 3 2 3 2 3( , , ) min ( , , ), ( , , )i iJ u u u J u u u u u u U=   (8)     

 
The necessary conditions that an optimal control 
must satisfy the Pontryagin’s Maximum Principle 
(PMP) that converts (2 – 6) into a problem of 
minimizing pointwise a Hamiltonian H, with 

respect to 1 2 3, , .u u u  

 

 

 

 

 

22 2
3 31 1 2 2

1 2

1

1

2 1

3 2

2 1 3 2

2 2 2

[1 ( )] ( ) ( )

[1 ( )] ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

S

I I

D D

C C

R

B uB u B u
H A D A C

u t S t S t

u t S t I t I t

I t u t D t D t

I t u t C t C t

u t D t u t C t R t

  

     

    

    

   

= + + + +

+  − − −

+ − − + − +

+ − − +

+ − − −

+ + −

(9) 

 

where , , ,S I D C     and R  are the adjoint 

variables or co-state variables. 
 
In order to find the necessary conditions for this 
optimal control, we apply the Pontryagin’s 
Maximum Principle and the existence result for 
the optimal control as described by (Lenhart & 
Workman, 2007). 
 

Theorem: The optimal controls
* * *

1 2 3, ,u u u and 

solutions S, I, D, C, R of the corresponding state 
system (2 – 6), then there exist adjoint variables 

, , ,S I D C     and R  satisfying: 

 

, , ,
( ) ( ) ( )

,
( ) ( )

S I D

C R

d d dH H H

dt S t dt I t dt D t

d dH H

dt C t dt R t

  

 

  
− = − = − =

  

 
− = − =

 

 

     (10) 
 
then, 
 

( )( )

( )

( ) ( ) ( )

( )

( ) ( )

( )

( )

1

1

1
1

2 1 1

2
1

3 2

[1 ( )]
( )

( )
[1 ( )]

( ) ( )

( )
[1 ( )]

( ) ( )

( )

( )
[1 ( )]

( ) ( )

( )

S I S

S I

I D I C I I

S I

D R D D

S I

C R C

H
u t

S t

H S t
u t

I t N t

S tH
u t

D t N t

u t A

S tH
u t

C t N t

u t

   


 

        


 

     


 

   


= − − +



 
= − − 

  

+ − + − + +

 
= − − 

  

+ − + + −

 
= − − 

  

+ − + ( ) 2

( )
( )

C

R S R

A

H

R t

 

   

+ −


= − +



 (11) 

 
with transversality conditions, 
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( ) ( ) ( ) ( ) ( ) 0S I D C Rtf tf tf tf tf    = = = = = (12) 

 
using the optimality conditions; 
 

( ) *
11 max 0,min 1, ,u u=  

 

( ) *
22 max 0,min 1,u u=  and 

 

( ) *
33 max 0,min 1,u u=  

 
we solve the given optimality conditions to find 

1 21 2,u u u u= =  and 3 3 ,u u=  we let: 

 

1 2

0, 0
H H

u u

 
= =

 
 and 

3

0,
H

u


=


                (13) 

 

we differentiate (9) with respect to iu , 0 1,iu   

where 1, 2,3i =  to obtain: 

 

1 1
1

( ) ( )S I

H
B u S t S t

u
   


= + −


                (14) 

( )1 ( ) I Su S t  = −  

 

2 2 1 1
2

( ) ( )D R

H
B u D t D t

u
   


= − +


                 (15) 

( )1
2

2

( ) D RD t
u

B

  −
=  

 

3 3 2 2
3

( ) ( )C R

H
B u C t C t

u
   


= − +


                 (16) 

( )2
3

3

( ) C RC t
u

B

  −
=  

 
therefore, 
 

( )( ) *
1 max 0,min 1, ( ) ,I Su S t  = −            (17) 

 
 

( )1*
2

2

( )
max 0,min 1,

D RD t
u

B

    − 
=    

   

        (18) 

 
 

( )2*
3

3

( )
max 0,min 1,

C RC t
u

B

    − 
=    

   

         (19) 

 
NUMERICAL SIMULATIONS 
 
In this section, we investigate numerically the 
effect of the control strategies on the spread of 
HCV in a population. We solve the optimality 
system using iterative method which will result 
into the optimal sexual protection and treatments 
strategies in controlling the HCV transmission 
dynamics. The optimal control solution is 
obtained by solving the optimality system, which 
consists of the state system and the adjoint 
system. Because of the transversality conditions, 
we solve the state equations with a guess for the 
controls over the simulated time using the fourth-
order Runge–Kutta scheme. 
 
First, we consider the application of sexual 
protection in the susceptible class, the treatment 
on the acute infected individuals and the 
treatment on the chronic infected individuals to 
see the effect of each control in their respective 
classes. 
 
 

Implementing Sexual Protection (
1

u ) as 

Control 
 
We consider implementing the sexual protection 

1u  as a control against the HCV transmission in 

the population. We use 1u  to optimize the 

objective functional (J) while we set 2 0u =  and 

3 0,u =  so we can see the effectiveness of the 

control in reducing the virus transmission.  
 
We observe from Figures 1(a) - 1(c) a significant 
decrease in acute, diagnosed and chronic 
infected individuals as against when there is no 
control. Therefore, the control is very effective in 
control the virus transmission. While, figure 1(d) 
the control profile shows a swift decline in the 
transmission from 100% to the lower bound at t = 
10 years. 
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Figure 1(a) 

 

 
Figure 1(b) 

 

 
    Figure 1(c) 
 

 
Figure 1(d) 

 
Implementing Treatment on Acute Individuals 

(
2

u ) as Control 

 

The treatment control 
2

u  of acute infected 

individuals, was used to optimize the objective 

functional (J) while we set 1 0u =  and 3 0u = . It 

has been observed from Figure 2(a) that the 
number of acute infected individuals declines 
gradually due to the drug efficacy of acute 
treatment as compared with when there is no 
control. While, the control profile, figure 2(b) 
shows how the control decrease the infection 
swiftly from the highest bound to the lower bound 
at t = 9.9 years. 

 
Figure 2(a) 

 

 
Figure 2(b) 

 
 
Implementing Treatment on Chronic 

individuals (
3

u ) as Control 

The treatment control 
3

u  of chronic infected 

individuals, was used to optimize the objective 

functional (J) while we set 1 0u =  and 2 0u = . It 

has been observed from figure 3(a) that the 
number of chronic infected individuals decreases 
more due to the drug efficacy of chronic 
treatment as compared with when there is no 
control. While, the control profile, figure 3(b) 
shows how the control decrease the infection 
swiftly from the highest bound to the lower bound 
at t = 9.8 years. 
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Figure 3(a) 

 

 
Figure 3(b) 

 
 

Implementing Sexual Protection 1u  and 

Treatment for Acute Individuals 2u  at Acute 

Stage as Control  
 

We use the sexual protection 1u  and the 

treatment of acute infected individuals 
2

u to 

optimize the objective functional (J) while we set 

3 0,u =  and it shows clearly the effectiveness of 

the two controls simultaneously.  
 
Figure 4(a) shows how the number of acute 
infected individuals declines gradually as 
compared with when there is no control. While, 
the control profile, Figure 4(b) shows how the 
control decrease the infection swiftly from the 
highest bound to the lower bound at t = 9.8 years. 

  
     Figure 4(a) 
 

 
   Figure 4(b) 

 
 

Implementing Sexual Protection 1u  and 

Treatment of Chronic Individuals 3u  at 

Chronic Stage as Control 
 

The sexual protection 1u  and the treatment of 

chronic infected individuals 
3

u are used to 

optimize the objective functional (J) while we set 

2 0,u =  and it shows clearly the effectiveness of 

the two controls concurrently.  
 
Figure 5(a) shows how the number of acute 
infected individuals declines gradually as 
compared with when there is no control. While, 
the control profile, Figure 5(b) show that the 
controls decrease the infection swiftly from the 
highest bound to the lower bound at t = 6.6 years 
and t = 9.8 years. 
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CONCLUSION 
 
In this work, a mathematical model of HCV 
dynamics was formulated, by incorporating three 
control parameters that will curtail the 
transmission of the virus. We considered optimal 
control strategy using Pontryagin’s maximum 
principle to analyze the effectiveness of the three 

(3) controls: sexual protection 1,u  treatment of 

acute individuals 
2

u  and treatment of chronic 

individual 
3
.u  We observe that the implementation 

of the controls individually or concurrently will 
have a significant impact in decreasing the 
transmission of the virus after some time. 
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