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ABSTRACT 
 
Radial Basis Function-Finite Difference (RBF-FD) 
approximations for two-dimensional heat equation 
were formulated using four infinitely smooth 
positive definite radial basis functions (RBFs), 
namely, Gaussian (GA), Multiquadrics (MQ), 
Inverse Multiquadrics (IMQ) and Inverse 
Quadratic (IQ).   
 
The RBFs were used for discretizating the space 
variables while Runge-Kutta method was used as 
a time-stepping method to integrate the resulting 
systems of differential equations. The accuracy of 
the RBF-FD discretization can be increased by 
considering not only the data sites but also the 
derivative values on the nodes present in the 
supporting region. The RBF-FD approach makes 
it easy to test how different node distributions 
influence the extent to which the physics was 
captured. The numerical results and its 
comparison with other numerical methods are 
presented. 
 

 (Keywords: Radial Basis Function, Gaussian (GA), 
Multiquadrics (MQ), Inverse Multiquadrics (IMQ) and 

Inverse Quadratic (IQ)) 

 
 
INTRODUCTION 
 
Finite difference methods are numerical 
techniques for finding solutions to PDEs that 
approximate the solution on a mesh of points that 
are equally spaced across the domain. In 
situations where the preferred points are not on a 
mesh, or when the domain does not give itself to 
simple meshes, it is desirable to have mesh-free 
methods. Meshless methods are one such class 
of methods in which the solution is approximated 
on a set of nodes with no specified connectivity. 
Radial Basis Function Finite Difference methods 
(RBF-FD) are such mesh-free methods.  
 

Recently, a RBF-FD method was proposed by 
Flyer and Fornberg [16]. The RBF-FD method 
generates a local RBF interpolant for expressing 
the function derivatives at a node as a linear 
combination of the function values on the nodes 
present in the neighborhood of the considered 
node. Also, this RBF interpolants are used to 
generate the weights of a Finite Difference (FD) 
formula [5].  
 
The RBF-FD concept [3, 12, 14, 15] is to require 
such approximations to be exact for radial basis 
functions (RBFs) rather than for multivariate 
polynomials. For infinitely smoothed RBFs, this 
procedure can never give rise to singularities, no 
matter how the nodes are distributed [7, 9, 10]. 
The outcomes tend to become mostly accurate 
when using nearly flat RBFs with a small shape 
parameter ε) [1, 6, 8, 13], but the resulting 
systems will then again become ill conditioned. 
However, in contrast to the multivariate 
polynomial case, the ill-conditioning that arises in 
the RBF case is not of a fundamental nature, and 
it can be avoided by using appropriate numerical 
algorithms [5]. 
 
The latest RBF-FD studies described numerical 
solutions of elliptic and of convective-diffusive 
PDEs. The approach was soon afterwards shown 
to be well suited for computational fluid 
mechanics [2, 11, 13], more recently also in 
purely convective situations [4, 10].  
 
This paper studies the accurate computation of 
the weights (coefficients) in RBF-FD formulas for 
two-dimensional heat equations. 
 
 
Radial Basis Functions 
 
Radial basis functions approximate a function f(x) 
sampled at some set of N distinct node locations 
by translates of a single radially symmetric 

function ϕ(r). Given the data values  at 
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the node locations  , the Radial basis 

function interpolant s(x) to the data is defined by:  
 
 

  (1) 

 
 

where the expansion coefficients, , are 

established by applying the collocation conditions 
such that the residual is zero at the data locations. 
This is equivalent to solving the symmetric linear 
system of equations: 
 

                            (2) 
 
where A is the interpolation matrix. Studies have 
shown that for radial basis functions such as the 
Gaussian, inverse multiquadric, and inverse 
quadratic, the matrix in (2) is positive definite 
regardless of the distinct node locations and the 

dimension. Likewise, if the shape parameter, , is 

kept fixed throughout the domain best results are 
realized with roughly evenly distributed nodes 
[12].  
 
Numerous examples of frequently used RBFs are 
shown in Table 1 A clear difference is made here 
between three different categories: the infinitely 
smooth, the piecewise smooth and the compactly 
supported RBFs. Radial basis functions of the 

first type are  and can provide spectral 

accuracy, while the piecewise smooth RBFs give 
algebraic convergence for interpolation. 
 
 
RBF-FD Approximations 
 
The RBF-FD approximation is analogous in 
concept to classical finite-differences (FD), in that 

derivatives of a function  are approximated 

by weighted combinations of  function values in 

a trivial neighborhood around a single center 

node, . That is: 

                                          

   (3) 

 
 

 
Table 1: Examples of Commonly used Radial Basis Functions. 

 
Name 

 
Notes 

 Infinitely smooth  

Gaussian (GA) 
  

Multiquadrics (MQ) 
  

Inverse Multiquadrics (IMQ) 

 

 

Inverse Quadratic (IQ) 

 
 

Generalized Multiquadric   
Laguerre–Gaussian 

  
Poisson 

 
 

 Piecewise smooth  

Radial power   
Thin plate spline   
 Compactly supported  

Wendland  Ex.,  in  
Gneiting  Ex.,  in  
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where  represents a differential operator on 

 (e.g., or ).  

 

Here the  nodes are known as a stencil with size 

n. The  are stencil weights. In practice stencils 

include the center, , plus the  nearest 

neighboring nodes. The definition of “nearest” 

depends on the Euclidean distance ( ). 

 
In a situation whereby the 2-D nodes are not 
situated on a regular grid, the weights for 

approximating an operator  (such as or 

) can no longer be obtained by 

means of 1-D polynomial procedures. This can be 
overcome by enhancing bivariate polynomials with 

radial basis functions , with one 

such centered at each stencil point 

, and then introducing matching 

constraints to the associated RBF expansion 
coefficients.  
 
The weights for scattered node RBF-FD stencils 
can then be obtained by solving a linear system of 
the form indicated in (4) in the case of using up 

through linear polynomials in and : 

 
 

 
    (4) 

 
 
The entries in the matrix A are 

. All the terms in the RHS 

should be evaluated at the stencil’s ‘center point’ 

. In the solution vector,  provides 

the weights to be used at nodes 

, while the remaining w-entries 

should be ignored. 
 
In (3), A-matrix is the same as the matrix that 
arises in RBF interpolation of scattered data 

, for finding the interpolant 

of the form: 
 

 

     (5) 
 
with constraint: 
                                                                 

    (6) 

 

where the coefficients  can be found as the 

solution to the linear system: 
                                                                             

     (7) 

 
Here, RBFs are used to calculate derivative 
approximations in local mode, where the N nodes 
across the full domain need its own stencil. In the 
local mode, the number of nodes/weights n within 
each stencil is less than the total number of 
nodes N in the full domain.  
 
 
Differentiation Matrices 
 
For time-dependent PDEs, the stencil weights 
remain constant for all time-steps when the 
nodes are stationary because RBF-FD weights 
are only a function of node locations.  
 

Given the set of nodes in the domain, , 

the w-th row of the differentiation matrix (DM) 
represents the discrete PDE operator for the 

stencil centered at node with stencil nodes 

: 

 
                                                            

     (8) 

 
  
                                                 

  (9) 

 
 

where the condition  maps the local 

stencil index for each node, j, to a global index, k, 

and  is the global (row, column) index of 

. Vector . Equation (4) can 

be rewritten as: 
 

 
 
DMs are utilized in both explicit and implicit 
modes [***]. The explicit mode entails calculating 
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the matrix-vector multiplied to get derivative 

values, , from explicitly known vector of solution 

values : 

  

                               (10) 

 

whereas implicit solves for unknown : 

      

           (11) 

 
RBF-FD weights assemble the rows of the 

differentiation matrix, . The sparsity of rows 

reflects the subset of included in 

corresponding stencils of size n. The mapping 

between global indices  and local indices  is 

used for each sum.  
 
On the right-hand side, discrete derivative values 

 are approximated at all stencil centers. 

Therefore, the calculation of the differentiation 
weights is performed once in a single 

preprocessing step of  floating point 

operations (FLOPs) [**].  
 
Consider for example, the 2-D Laplacian operator, 
 

 :   (12) 

 

 
 
which can be expanded as: 
 

     (13) 
 
where either a single DM is composed by adding 
two lower order DMs, or the lower order DMs are 
directly multiplied against the vector u.  
 
 
Method of Lines (MOL) Formulation and Time 
Stepping Considerations for the PDE Test 
Problem 
 
The full discretized equation of time-dependent 
PDE is given by: 
 

   (14) 

 

evaluated at the nodes . The system is 

advanced in time using the classical Runge-Kutta 
4th-order method (RK4). 
 
The standard PDE test problem that we will 
consider describes two-dimensional temperature 
diffusion over a plate. Consider a two-
dimensional parabolic PDE: 
 

 

     (15) 
 

for   and  

with the initial conditions and boundary 
conditions: 
 

 

        

 (16) 

 

For solving this equation, we have , 

which describes the temperature distribution over 
a square plate having each side 4 units long 
(shown in Figure 1). 
 
 

 
 

Figure 1: The Temperature Distribution over a 
Square Plate Having Each Side 4 Units Long. 
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Table 1: Computation Table. 

 
                            Computational Methods Error 

X y RBF-FD FDM Exact Solution RBF-FD FDM 

0 0 0 0 0 0.00E+00 0.00E+00 

0 1 2.177979523 2.177979523 2.177979523 0.00E+00 0.00E+00 

0 2 7.805202935 7.805202935 7.805202935 0.00E+00 0.00E+00 

0 3 21.07552942 21.07552942 21.07552942 0.00E+00 0.00E+00 

0 4 55.25179365 55.25179365 55.25179365 0.00E+00 0.00E+00 

0.5 0.5 1.42E-18 -0.00520602 0 1.42E-18 5.21E-03 

0.5 1.5 3.723337739 3.55269058 3.816426247 9.31E-02 2.64E-01 

0.5 2.5 11.72480235 11.42495837 12.01200678 2.87E-01 5.87E-01 

0.5 3.5 30.17725346 30.34838635 30.60549923 4.28E-01 2.57E-01 

1 0 -2.177979523 -2.17797952 -2.177979523 0.00E+00 0.00E+00 

1 1 2.58E-16 -0.01765813 0 2.58E-16 1.77E-02 

1 2 4.915773147 4.447615015 5.123528432 2.08E-01 6.76E-01 

1 3 13.1143209 12.67896622 13.54334053 4.29E-01 8.64E-01 

1 4 31.27629394 31.27629394 31.27629394 0.00E+00 0.00E+00 

1.5 0.5 -3.723337739 -3.57773119 -3.816426247 9.31E-02 2.39E-01 

1.5 1.5 2.61E-16 -0.03337493 0 2.61E-16 3.34E-02 

1.5 2.5 4.227789894 3.611470068 4.452232118 2.24E-01 8.41E-01 

1.5 3.5 6.345768427 5.995804107 6.539402104 1.94E-01 5.44E-01 

2 0 -7.805202935 -7.80520294 -7.805202935 0.00E+00 0.00E+00 

2 1 -4.915773147 -4.50261177 -5.123528432 2.08E-01 6.21E-01 

2 2 -7.67E-18 -0.05252514 0 7.67E-18 5.25E-02 

2 3 -1.105050081 -1.66875601 -1.043422556 6.16E-02 6.25E-01 

2 4 -17.89103803 -17.891038 -17.89103803 0.00E+00 0.00E+00 

2.5 0.5 -11.72480235 -11.4520324 -12.01200678 2.87E-01 5.60E-01 

2.5 1.5 -4.227789894 -3.69818705 -4.452232118 2.24E-01 7.54E-01 

2.5 2.5 -4.24E-17 -0.06806797 0 4.24E-17 6.81E-02 

2.5 3.5 -14.98112309 -15.4105001 -15.12185498 1.41E-01 2.89E-01 

3 0 -21.07552942 -21.0755294 -21.07552942 0.00E+00 0.00E+00 

3 1 -13.1143209 -12.7252976 -13.54334053 4.29E-01 8.18E-01 

3 2 1.105050081 1.562554065 1.043422556 6.16E-02 5.19E-01 

3 3 8.34E-17 -0.05885971 0 8.34E-17 5.89E-02 

3 4 -40.92297578 -40.9229758 -40.92297578 0.00E+00 0.00E+00 

3.5 0.5 -30.17725346 -30.360523 -30.60549923 4.28E-01 2.45E-01 

3.5 1.5 -6.345768427 -6.04062642 -6.539402104 1.94E-01 4.99E-01 

3.5 2.5 14.98112309 15.33345151 15.12185498 1.41E-01 2.12E-01 

3.5 3.5 3.32E-17 -0.02239967 0 3.32E-17 2.24E-02 

4 0 -55.25179365 -55.2517937 -55.25179365 0.00E+00 0.00E+00 

4 1 -31.27629394 -31.2762939 -31.27629394 0.00E+00 0.00E+00 

4 2 17.89103803 17.89103803 17.89103803 0.00E+00 0.00E+00 

4 3 40.92297578 40.92297578 40.92297578 0.00E+00 0.00E+00 

4 4 0 0 0 0.00E+00 0.00E+00 
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Figure 2: The Solution of a Two-Dimensional Parabolic PDE Obtained using RBF-Finite Difference 

Method . 

 
Figure 3: The Solution for a Two-Dimensional Parabolic PDE Obtained using Finite Difference Method. 
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CONCLUSION 
 
This paper shows the implementation of radial 
basis function generated finite differences (RBF-
FD) for two-dimensional temperature diffusion 
over a plate. The comparison of the numerical 
results, traditional finite difference and exact 
solution are presented.  
 
We obtained a satisfactory result when compared 
with finite difference solutions. The stabilized 
RBF-FD approach proved to be highly competitive 
against the traditional finite difference method. 
 
Though the future of RBF-FD is optimistic, many 
topics still need to be addressed. These include 
dynamic adaptive node refinement, stability 
analysis of boundary conditions for hyperbolic 
problems, and the handling of discontinuities in 
the domain. 
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