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ABSTRACT 
 
In this paper, an efficient hybrid algorithm shall be 
formulated for the computation of second-order 
Fredholm integro-differential equations. In 
developing the algorithm using the method of 
interpolation and collocation, power series was 
adopted as the basis function with the integration 
carried out within a one-step interval. The 
algorithm derived was then applied on some 
modeled second-order Fredholm integro-
differential equations and from the results 
obtained; it is obvious that the algorithm is 
computationally reliable. The basic properties of 
the algorithm derived were also analyzed. 
 

 (Keywords: algorithm, Fredholm equations, hybrid 
integro-differential equations, second-order) 
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INTRODUCTION 
 
The integro-differential equation is one of the 
most applied equations in science and 
engineering. It was introduced by Volterra for the 
first time in the early 1900s. It is an equation that 
involves both integrals and derivatives of a 
function. Volterra investigated the population 
growth, focusing his study on the hereditary 
influences; where through his research work the 
topic of integro-differential equations was 
established by Wazwaz (2011). 
 
It is important to note that in the integro-

differential equations, the unknown function )(xy  

and one or more of its derivatives such as 

...),(''),(' xyxy  appear out and under the 

integral sign as well (Mohammed et. al., 2016). It 
can be classified into Fredholm equations and 
Volterra equations. The upper bound of the 
region for integral part of Volterra type is a 

variable while it is a fixed number for that of 
Fredholm type. 
 
In this paper, a highly efficient hybrid algorithm 
shall be developed for the computation of second 
order Fredholm integro-differential equations of 
the form: 
 

 +=

b

a

bxadttytxkyxfxy ,)(),(),()(''    

     (1) 
 
subject to the initial conditions: 
 

 == )(',)( ayay      (2) 

 

where  and  are real constants. The function 

),( yxf  and the kernel ),( txk  are known. The 

solution )(xy  is to be determined. We assume 

that the problem (1) is well-posed; that is, the 
problem has the following properties: 
 

• a solution exists, 

• the solution is unique, and  

• the solution’s behavior changes continuously 
with the initial conditions 

 
Fredholm integro-differential equations model 
many situations in science and engineering, such 
as in circuit analysis. The activity of interacting 
inhibitory and excitatory neurons can be 
described by a system of integro-differential 
equations. They are also of significant importance 
in modeling numerous physical processes such 
as signal processing and neural networks 
(Kanwal, 1997). The applications of Fredholm 
integro-differential equations in electromagnetic 
theory and dispersive waves and ocean 
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circulations are enormous, Mohammed et al. 
(2016). 
 
Many authors have developed different methods 
for the solution of problems of the form (1). These 
methods include Lagrange interpolation method 
(Rashed, 2004), Tau operational method 
(Mohammad and Shahmorad, 2005), Legendre 
polynomial method (Saadatmandi and Dehghan, 
2010), generalized minimal residual method 
(Aruchuman and Sulaiman, 2010), differential 
transform method with Adomian polynomials 
(Behiry, 2013), canonical basis function method 
(Taiwo, Ganiyu and Okperhie, 2014), power 
series and Chebyshev series approximation 
methods (Gegele, Evans, and Akoh, 2014), 
Bessel function method (Parand and Nikarya, 
2014), cubic spline collocation method (Taiwo 
and Gegele, 2014),  nonstandard finite difference 
method (Pandey, 2015), homotopy analysis 
transform method (Mohammed et al., 2016), 
among others.  
 
However, in this research we shall develop an 
efficient hybrid algorithm and apply it to compute 
Fredholm integro-differential equations of the 
form (1). It is important to state that the hybrid 
algorithm has the advantage of generating 
independent solutions at selected grid points 
without overlapping. It is also less expensive in 
terms of the number of function evaluation 
compared to predictor-corrector methods; 
moreover, they possess the properties of Runge-
Kutta method of being self-starting and do not 
require starting values. 
 
 
FORMULATION OF THE HYBRID ALGORITHM 
 
In this section, a discrete hybrid algorithm of the 
form: 
  

1
(0) ( ) ( ) 2 2

0

( ) ( ), 0,1i i i

m i n i n i m

i

A h e y h d f y h b f i
=

= + + =Y Y  

     (3) 
       

shall be derived for the computation of Fredholm 
integro-differential equations of the form (1) on 

the interval  1,n nx x +
. The initial assumption is 

that the solution on the interval  1,n nx x +
 is 

locally approximated by the basis function 
(approximate solution), 
 

1

0
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r s

j

j
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where 
j are the real coefficients to be 

determined, r  is the number of interpolation 
points, s  is the number of collocation points and 

1n nh x x −= −  is a constant step-size of the 

partition of the interval  ,   which is given by 

0 1 2 1... n nx x x x x −=      = . 

 
We assume that the polynomial (4) must pass 
through the interpolation points 

( )
1 3

, , ,
2 4

n s n sx y s+ + =  and the interpolation 

points ( )
1

, , 0 1
4

n r n rx f r+ +

 
=  

 
 and we require 

that the following ( )r s+  equations must be 

satisfied:  
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   (6) 

 

The ( )r s+  undetermined coefficients 
j  are 

obtained by solving the system of nonlinear 
equations (5) and (6) using Gauss elimination 
method. This gives a continuous hybrid linear 
multistep algorithm of the form: 
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The coefficients 1 3 0 1 1 3 1

2 4 4 2 4

, , , , , ,        are given by; 
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where 
h

xx
t n−
= , ( )n j ny y t jh+ = +  is the numerical approximation to the analytic solution ( )n jy t +

 and 

( )( ), ( ), '( )n j n j n n ny f f t jh y t jh y t jh+ += = + + +  is the approximation to ' ( )n jy t +
.  

 
The continuous algorithm (7) is then solved for the independent solution at the grid points to give the 
continuous algorithm: 
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We then evaluate (9) at 
1 1

1
4 4

t
 

=  
 

 to give the algorithm of the form (3) where, 
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(0)A  is a 4 4  identity matrix given by: 
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ANALYSIS OF BASIC PROPERTIES OF THE HYBRID ALGORITHM 
 
In this section, the basic properties of the hybrid algorithm shall be analyzed.  
 
Order of Accuracy and Error Constant of the Hybrid Algorithm 
 
According to Lambert (1991), the linear operator associated with the discrete hybrid algorithm (3) is 
defined as: 

  ( )
1

(0) ( ) ( ) 2

0 0

0

( ) : ( ) ( )i i i

m i n n m
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L y t h h e y h d f y b
−

= − − +A Y F Y       (11) 

 

Assuming that ( )y t is sufficiently differentiable, we write the terms in (11) as a Taylor series expansion 

about the point t  to obtain the expression: 

 

  2 1 1 2 2
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where the constant coefficients , 0,1,2,...pc p =  are given by; 
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The hybrid algorithm (3) is said to be of uniform accurate order p , if p  is the largest positive integer for 

which 0 1 2 1 2... 0, 0p p pc c c c c c+ += = = = = =  . 2pc +  is called the error constant and the local 

truncation error of the algorithm is given by; 
 

( )( 2) ( 2) ( 3)
2 ( )p p p

n k pt c h y t O h+ + +
+ += +          (14) 

 

t has therefore been established from our computations that the hybrid algorithm (3) has coefficients of h  

given by 0 1 2 3 4 5 6 0c c c c c c c= = = = = = = , implying that the order  5 5 5 5
T

p =  and the error 

constant is given by: 
 

7 6 6 6
7 6.4789 10 1.5501 10 2.4523 10 3.1002 10

T

c − − − − =       

 
 
Consistency of the Hybrid Algorithm 
 
The hybrid algorithm (3) is consistent since it 

has order 5 1p =  . According to Fatunla 

(1980), consistency controls the magnitude of 
the local truncation error committed at each 
stage of the computation. 
 
 
Zero-Stability of the Hybrid Algorithm 
 
Definition 1: (Fatunla, 1980): The hybrid 
algorithm (3) is said to be zero-stable, if the 

roots kszs ,...,2,1, =  of the first characteristic 

polynomial )(z  defined by 

(0)

0( ) det( )z zA e = −  satisfies 1sz  and 

every root satisfying 1=sz  have multiplicity 

not exceeding the order of the differential 
equation.  

Moreover, as 0, ( ) ( 1)rh z z z  −→ = − , 

where   is the order of the matrices 

(0)

0.A and e  For our method, 

 

1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1
( ) 0

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

z z

   
   
   = − =
   
   
   

   (15) 

  

   

 
Therefore,  
 

)(z = j → 1 2 3 40, 1z z z z = = = = .  

 
Hence, the hybrid algorithm is zero-stable.

 
It is 

important to note that the main consequence of 
zero-stability is to control the propagation of the 
error as the integration proceeds. 
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Convergence of the Hybrid Algorithm 
 
The hybrid algorithm is convergent since it is 
consistent and zero-stable. 
 
Theorem 1 (Butcher, 2008) 
 
A linear multistep hybrid algorithm is convergent 
if and only if it is stable and consistent. 
 
 
 
 
 

Region of Absolute Stability of the Hybrid 
Algorithm 
 
Definition 2 (Yan, 2011) 
 
Region of absolute stability is a region in the 

complex z  plane, where z h= . It is defined 

as those values of z  such that the numerical 

solutions of ''y y= −  satisfy 0jy →  as 

j →  for any initial condition. 

 
In determining the stability polynomial of the 
hybrid algorithm derived, the boundary locus 
method will be adopted. This gives: 
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The stability region is shown in Figure 1. 
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Figure 1: Region of the Absolute Stability of the Hybrid Algorithm. 

 
 
The stability region in the Figure 1 is A-stable 
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RESULTS AND DISCUSSION  
 
Numerical Experiments 
 
The hybrid algorithm developed in this research 
shall be adopted in solving some modeled real-life 
Fredholm integro-differential equations of the form 
(1). The following notations shall be used in the 
tables below: 
 

• AEHA - Absolute error of the algorithm 
 

• EMGAA - Absolute error in Mohammed et. al. 
(2016)   
 

• EGEA - Absolute error in Gegele et. al. (2014) 
 

• ETG - Absolute error in Taiwo and Gegele 
(2014) 
 

• sec/t  -  Execution time per seconds for 

computation at each stage 
 
 
Problem 1: Consider the model Fredholm integro-
differential equation: 
  

10,)()(''

1

0

+−=  xdttxtyxexy x   

     (17) 
 
subject to the initial conditions: 
 

1)0(',1)0( == yy          (18) 

 
 
The exact solution to the problem is given by: 
 

xexy =)(        (19) 

 
 
Source: Mohammed et. al. (2016) 
 
On the application of the new hybrid algorithm on 
Problem 1 we obtain the result presented in Table 
1. 
 
 
 
 
 

Table 1: Absolute Error of the Hybrid Algorithm 
for Problem 1. 

 

    x           AEHA                EGEA        sec/t  

0.1000    3.024248e-013    2.01e-008    0.0294    
0.2000    4.584944e-013    1.27e-008    0.0396    
0.3000    7.316370e-014    1.36e-007    0.0463    
0.4000    1.692257e-012    5.25e-007    0.0568    
0.5000    4.596878e-012    2.29e-006    0.0664    
0.6000    8.754997e-012    3.98e-006    0.0667    
0.7000    1.390665e-011    1.59e-005    0.0668    
0.8000    1.959244e-011    7.76e-004    0.0670    
0.9000    2.519718e-011    3.67e-004    0.0671    
1.0000    2.999911e-011    5.65e-004    0.0672   

 
 
Problem 2: Consider the model Fredholm 
integro-differential equation: 

11,)()1(32)(''

1

1

−−+= 
−

xdttyxtxxy  

     (20) 
 
subject to the initial conditions: 
 

1)0(',1)0( == yy          (21) 

 
The exact solution to the problem is given by: 
 

32 5
2

3
1)( xxxy ++=      (22) 

Source: Gegele et. al. (2014) 
 
On the application of the new hybrid algorithm on 
Problem 2 we obtain the result presented in 
Table 2. 
 
 
Table 2: Absolute Error of the Hybrid Algorithm 

for Problem 2. 
 

    x           AEHA                EGEA        sec/t  

0.1000    0.000000e+000    1.250e-005    0.0136    
0.2000    1.110223e-016    5.000e-004    0.0215    
0.3000    8.881784e-016    4.375e-004    0.0218    
0.4000    7.771561e-016    3.700e-004    0.0220    
0.5000    4.440892e-016    2.625e-004    0.0223    
0.6000    1.665335e-015    2.000e-004    0.0225    
0.7000    2.775558e-015    1.875e-004    0.0226    
0.8000    5.440093e-015    1.300e-003    0.0317    
0.9000    7.216450e-015    1.212e-003    0.0319    
1.0000    9.436896e-015    2.500e-003    0.0321   
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Problem 3: Consider the model Fredholm integro-
differential equation:  

10,)(11
3

5
)(''

1

0

+−=  xdttyxxy  

     (23) 
 
subject to the initial conditions: 
 

1)0(')0( == yy           (24) 

 
The exact solution to the problem is given by: 
 

32

3

5

6

5
1)( xxxxy −++=      (25) 

 
Source: Taiwo and Gegele (2014) 
 
On the application of the new hybrid algorithm on 
Problem 3 we obtain the result presented in Table 
3. 
 

Table 3: Absolute Error of the Hybrid Algorithm 
for Problem 3. 

 

    x           AEHA                 ETG         sec/t  

0.1000    2.292055e-012    3.489e-006    0.0116    
0.2000    3.113954e-012    3.410e-006    0.0231    
0.3000    3.376410e-012    2.983e-006    0.0236    
0.4000    3.424150e-012    2.837e-006    0.0237    
0.5000    3.394396e-012    2.602e-006    0.0241    
0.6000    3.343548e-012    2.591e-006    0.0242    
0.7000    3.294920e-012    2.429e-006    0.0243    
0.8000    3.257394e-012    1.994e-006    0.0244    
0.9000    3.234413e-012    1.405e-006    0.0245    
1.0000    3.226530e-012    1.067e-008    0.0247    

 
 
Problem 4: Consider the model Fredholm integro-
differential equation:  
 

11,)(
2

1

35

146
10)(''

1

1

2 −+−= 
−

xdttxtyxxy

     (26) 
 
subject to the initial conditions: 
 

0)0(',1)0( == yy          (27) 

 
The exact solution to the problem is given by: 
 

3251)( xxxy −+=       (28) 

 
Source: Taiwo and Gegele (2014) 
 
On the application of the new hybrid algorithm on 
Problem 4 we obtain the result presented in 
Table 4. 
 
Table 4: Absolute Error of the Hybrid Algorithm 

for Problem 4. 
 

    x            AEHA               ETG         sec/t  

0.1000    1.147693e-014    6.008e-008    0.0124    
0.2000    6.714074e-014    7.918e-008    0.0218    
0.3000    1.834088e-013    8.432e-007    0.0312    
0.4000    3.385625e-013    6.884e-007    0.0316    
0.5000    4.861112e-013    5.718e-007    0.0320    
0.6000    5.798695e-013    5.623e-007    0.0321    
0.7000    5.947465e-013    4.009e-007    0.0322    
0.8000    5.329071e-013    2.929e-007    0.0323    
0.9000    4.160006e-013    2.887e-007    0.0325    
1.0000    2.744471e-013    1.999e-007    0.0326 

 
 
DISCUSSION OF RESULTS 
 
From the results generated in Tables 1-4, it is 
clear that the newly derived hybrid algorithm is 
computationally reliable and efficient. This is 
because the absolute errors of the hybrid 
algorithm derived (AEA) is far smaller than those 
of the methods with which we compared our 
results with. The hybrid algorithm is also efficient 
because from the tables, the execution times per 
seconds are very small. This shows that the 
hybrid algorithm generates results very fast. 
 
 
CONCLUSION 
 
An efficient hybrid algorithm has been developed 
in this paper for the solution of second order 
Fredholm Integro-differential equations of the 
form (1). The hybrid algorithm developed was 
applied on some modeled second order 
Fredholm integro-differential equations and from 
the results obtained, it is clear that the hybrid 
algorithm is computationally reliable. The 
analysis of the hybrid algorithm derived was also 
carried out showing that it is consistent, 
convergent and zero-stable.  
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