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ABSTRACT 
 
Variable selection has been a very essential 
challenge in building a multiple regression model. 
Exclusion of influential covariates or including 
covariate with zero effect will no doubt affect the 
estimation precision and as well the predictive 
accuracy of the model. “Spike-and-Slab prior” is 
an increasingly popular variable selection 
approach used in the Bayesian framework, which 
aids the variable selection and the estimation of 
regression parameters.  
 
In this research, the performances of the MCMC 
implementation for some versions of spike and 
slab priors for variable selection in normal linear 
regression models were investigated with regards 
to posterior inclusion probability for the simulated 
data under different setting (independent and 
correlated covariates, difference variance scales 
and varying sample sizes). Evidence from the 
simulation study revealed that the selected priors 
have similar performance under the independent 
setup and correlated setup, but the standard 
errors of coefficient estimates are higher for 
correlated covariates compare to independent 
covariates. The mean estimates of the coefficients 
get closer to the true coefficient values as the 
sample size increases under all different priors 
considered, and also the posterior inclusion 
probability depends on the size of variance of the 
slab component. 

 
(Keywords: covariates, posterior distribution, precision, 

regression coefficients, spike-and-slab priors) 
 

 
INTRODUCTION 
 
Regression model is among the most popular 
statistical methods employ to investigate the 
impact of independent variable on the response 
variable. In the normal linear regression model, 
the mean of the dependent variable is assumed to 

be a linear function of the influential covariates. In 
the availability of potentially large set of observed 
independent variables, the inclusion of non-
influential variables in the model or exclusion of 
important variables from the model may affect the 
predictive accuracy of the model. Therefore, 
methods of variable selection are indisputably 
required to correctly distinguish between zero 
effects and non-zero effects variables. 
 
In the Bayesian setup, variable selection is 
accomplished by assigning prior distributions to 
the coefficients of the independent variables. 
Although the choice of this prior is assumed to be 
specified by the nature of data to be analyzed, 
but a particular method called ‘Spike-and-Slab’ 
priors have gained a widespread attention. These 
priors are mixture of two distributions, one with 
mass centered at zero (Spike) and the other with 
mass spread over a wide range of non-zero 
values (Slab).  
 
This type of priors was proposed by Mitchell and 
Beauchamp (1988) in order to facilitate variable 
selection. Spike-and-Slab priors are actually put 
forward for the purpose of variable selection. The 
probability that a covariate is included in the final 
model is known as the posterior inclusion 
probability. It can simply be estimated by the 
mean value of the total number of posterior 
samples. Variable selection then depends on the 
posterior distribution of the indicator variable 
which is estimated by the empirical frequency of 
1 and 0, respectively. The higher the posterior 
mean of the indicator variable, the higher is 
evidence that the coefficient of a certain covariate 
is different from zero and thus have a significant 
impact on the dependent variable. 
 
In this paper, the performance of some selected 
different version of spike and slab priors on 
variable selection was investigated. Priors where 
the spike is a discrete point mass at zero and the 
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slab has a normal distribution (Independent-priors 
and Zellner’s g-prior) are considered. A second 
type of priors considered are Stochastic Search 
Variable Selection (SSVS)-prior and Normal 
Mixtures of Inverse Gamma (NMIG)-prior, where 
both the spike and the slab have continuous 
distributions. 
 
Variable selection actually helps to distinguish 
between influential and non-influential variables. 
In a real data set, it is very rare, that the true 
regression coefficients are either zero or large; the 
sizes are more likely to be tapered towards zero. 
(O’Hara and Sallanpaa, 2009). 
 
The mixture of priors for Bayesian variable 
selection in the linear regression models was 
originally proposed by Mitchell and Beauchamp 
(1988) and was remarkably made popular by 
George and McCulloch (1993, 1997) and Smith 
and Kohn (1996) among others. The method was 
extended to multivariate linear regression model 
by Brown et al. (1998, 2002). The appropriate 
reviews of some features of the selection priors 
can be found in Chipman et al. (2001) and Clyde 
and George (2004).  
 
A prior of the type βγ|σ2 ∼N(0, c(X′ γXγ)−1σ2) 
known as Zellner’s g-prior, which uses the design 
matrix of the current sample was proposed by 
Smith and Kohn (1996). Liang et al. (2008) and 
Cui and George (2008) have investigated 
formulations that use a complete Bayesian 
approach by imposing mixtures of g-priors on c. 
They also proposed hyper-g priors for c which 
leads to closed form marginal likelihoods and 
nonlinear shrinkage through Empirical Bayes 
procedures. 
 
George and McCulloch (1993) proposed and 
develop a procedure that uses probability 
considerations for selecting promising subsets, 
the procedure consists embedding the regression 
setup in a hierarchical normal mixture model 
where latent variables are used to identified 
subset choices, and the promising subsets of 
predictors is identified as those with higher 
posterior probability. 
 
Walli and Wagner (2011) compare the MCMC 
implementations for several spike and slab priors 
with regard to posterior inclusion probabilities and 
their sampling efficiency for simulated data. They 
further investigate posterior inclusion probabilities 
analytically for different slabs in two simple 
settings. And the application was illustrated on a 

data set of psychiatric patients where the goal 
was to identify covariates affecting metabolism. 
 
In a situation where it is not feasible to makes the 
full exploration of the model space due to the 
large number of covariates, the Monte Carlo 
Markov Chain methods can be used as random 
search to quickly and efficiently explore the 
models with high posterior probability (George 
and McCulloch,1997).  
 
Variable selection can be efficiently achieved by 
setting a threshold to the marginal posterior 
probabilities of inclusion. Barbieri and Berger 
(2002) put forward that the median probability 
model is the model that includes those covariates 
having posterior inclusion probability of at least 
“0.5”. 
 
 
MATERIALS AND METHODS 
 
Model Specification 
 
Consider the following linear model; 
 

  (1) 

 
Where y is the dependent variable and 

are the independent variables. The is 

error term, and it assume to be independent and 
identically distributed normal random variables 

with variance . 

 
This yields the distribution of the regression 
model:  
 

           (2) 

 
Where I denotes the unit matrix of dimension n. 
 
For Bayesian regression model with large k 
covariates, it is quite a computational challenge 
to consider all models with possible subsets of 
covariates. Therefore, this can be addressed by 
indicator random variable approach with high 
posterior probability using MCMC methods. 
 
A new indicator variable δj for each covariates 

coefficient  is defined, where δj= 0 represents 

exclusion and δj= 1 represents inclusion of the 
regressor in the model. 
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δj=  

 
The linear regression model above can be 
express in matrix form as stated below: 
 
y= Xβ + ε              (3) 
 
where y is the N×1 vector of the response 
variable, X is the N×k design matrix, β are 
vector of regression coefficients including the 
intercept, and ε is the N×1 error vector. 
 
Hence, by applying the indicator variable to each 
covariate coefficient, the regression model 
becomes: 
 

yi= 0 + δ1 1xi1 + δ2 2xi2 + ... + δk kxik+ εi        (4) 

 
The δ = (δ1,...,δk) is the vector that determines 

which elements of I are to be restricted to zero or 

included in the model. Once the value δ is 
chosen, the following reduced regression model in 
matrix form is obtained: 
 
y= Xδβδ + ε               (5) 
 
where βδ contains only the nonzero elements of β 
and the design matrix Xδ contains only the 
columns of X corresponding to nonzero effects. 
The intercept does not have an indicator 

variable as 0 is by all means included in the 

model. 
 
 
Prior Specification 
 
From (5) above, the model parameters are; the 
model indicator δ, the regressor effects β, and the 
error variance σ2. In the Bayesian framework, the 
goal is to derive the posterior density of all the 
parameters, i.e., 
 
p(δ, β, σ2| y)  αp(y| δ, β, σ2) p( δ, β, σ2) 
 
To specify a prior distribution, we assume that it 
has the structure: 
 
p( δ, β, σ2) = p(σ2 ,β |δ) Πp(δj) 
 
As δj is a binary variable, a straightforward choice 
of a prior for δj is: 
 

p(δj= 1) = π,   j = 1, . . . , k.. 
 
whereπ is a fixed inclusion probability between 0 
and 1. For σ2 and those effects of β which are not 
restricted to be zero, βδ, conjugate priors are 
used, i.e., 
 

σ2 ∼ −1(s0, S0) 

 

βδ|σ2, δ  ∼ N( , σ2) 

 
For the prior inclusion probability p(δj= 1) = π, we 
use a hierarchical prior: π ∼β(c0, d0) 
 
 
Spike-and-Slab Priors 
 
Priors where the spike is a discrete point mass at 
zero and the slab has a normal distribution such 
as independent-priors and Zellners’ g-prior are 
considered. A second type of priors considered 
are SSVS-prior and NMIG-prior where both the 
spike and the slab have continuous distributions. 
introducing the indicator variable δj in the linear 
regression model, the resulting prior for the 
regression coefficients is an example of a spike 
and slab prior. More formally the prior can be 
written as: 
 

p( |δj) = δjpslab( ) + (1 − δj) pspike( ) 

 
The coefficient is assumed to belong to either the 
spike distribution or the slab distribution, this 
depends on the value of δj. 
 
 
Independent Prior 
 
In the simplest case of a non-informative prior for 
the coefficients each regressor effect is 
assumed to follow the same distribution and to be 
independent of the other regressors: 
 

p( δ|σ2) = N( , σ2) = N(0, cσ2I) 

 
where c is an appropriate chosen constant. 
 
 
Zellner’s g-Prior 
 
Like the independence prior the g-prior assumes 
that the effects are a priori centered at zero, but 
the covariance matrix A0 is a scalar multiple of 
the Fisher information matrix, thus taking the 
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dependence structure of the covariates into 
account: 
 

p( δ|σ2) = N( , σ2)  = N(0, g((Xδ)′(Xδ))−1σ2) 

 
 
Stochastic Search Variable Selection (SSVS) 
Prior 
 
Formally, the prior construction is given as 
follows: 
 

 j|vj=vjN (0, φ2) + (1-vj)N (0, cφ2) 
 

vj=   

 
w∼ B(c0, d0) 

 

pspike( ) = N (0, cφ2) 

 

pslab( ) = N (0, φ2) 

 
where c is a very small constant and ψ2 is a fixed 
value chosen large enough to cover all 
reasonable values (Liang et al., 2008). 
 
 
Normal Mixture of Inverse Gamma (NMIG) -
Prior 

 

 j|vj=vjN (0, ) + (1-vj)N (0, c ) 

 

∼ G−1(aφ 0,bφ 0) 

 

vj=   

 
w∼ B(c0, d0) 
 
The resulting prior for the variance parameter is a 
mixture of scaled inverse Gamma distribution: 
 
p(φj

2) = (1 − ω)G−1(φj
2|aψ0, s0bψ0) +  

ωG−1(φj
2|aψ0, s1bψ0) 

 
 
 
 

MCMC Scheme for Both Independent Prior 
and Zelner’s g-Prior 
 
(1) sample each element δjof δ separately from 
p(δj | δ\j, y) ∝ p(y| δj, δ\j)p(δj, δ\j),where,  
δ\j denotes the vector δ without element δj. 
 
(2) sampleσ2|δ from G−1(sN

δ, SN
δ) 

 
(3) sample the intercept µ from N(ȳ, σ2/N) 
 

(4) sample the nonzero elements |σ2 in one 

block from N(aN
δ, AN

δ σ2) 
 
The marginal likelihood of the data conditioning 
only on the indicator variables is given as: 
 

p(y|δ) =  

 
with the posterior moment: 
 

 = ((Xδ)’Xδ+ ( )−1)−1 

 

 =  ((Xδ)’y+ ( )−1 ) 

 
sN=s0 + (N - 1)/2 
 

SN = S0 + (y − X )′(y − X )/2  +   

        (β − b0)′ -1 ( − )/2 

 
Under the Zelner’s g-prior, the marginal likelihood 

is given as;  

 

p(y|δ) =  

 
where, 
 

 =  

 
δ is the number of nonzero elements in δ and 
R(Xδ) is the coefficient of determination. 
 

http://www.akamaiuniversity.us/PJST.htm


 

 

The Pacific Journal of Science and Technology               –135– 
http://www.akamaiuniversity.us/PJST.htm                                                Volume 20.  Number 1.  May 2019 (Spring) 

The posterior moments are given as: 
 

 =  (Xδ′Xδ)−1 

 

 = =  (Xδ′Xδ)−1 Xδ′y 

 
sN=s0 + (N - 1)/2 
 

SN = S0 +  

 
 
MCMC Scheme for SSVS Prior 
 
(1) sample the intercept µ from N(ȳ, σ2/N) 

 

(2) sample each Vj, j=1,…,k. from p(Vj| , w) 

 
(3) sample w from B(c0 + n1, d0 + k - n1 ) 

 

(4) sample  from N(aN, AN), where (AN)-1 = X’X/ 

σ2 + D-1 ,  aN = AN X’y/σ2 and D=diag(φ2Vj) 
 

(5) sample σ2|δ from G−1(sN, SN) 
 
 
MCMC Scheme for NMIG-Prior 
 
(1) sample the common µ from N(ȳ, σ2/N) 

 

(2) for each j=1,…,k, sample Vj  from p(Vj| , φ2
j, 

w, y) 
 

(3) for each j=1,…,k, sample φ2
j  from p(φ2

j | ,Vj 

 
(4) sample w fromB(c0 + n1, d0 + k - n1 ), where 

n1 = (vj =1) 

 
(5) sample the error variance σ2from G−1(sN, SN) 

 

 
ANALYSIS AND RESULTS 
 
The data employed for this study were simulated 
from the environment of R statistical package. The 
study employed MCMC (Markov Chain Monte 
Carlo) experiment to empirically investigate the 
performances of the selected four Spike-and-Slab 
priors for Bayesian variable selection with regard 
to posterior inclusion probabilities.  
 

Two setups were considered; the independent 
and also correlated covariates. Data sets with 
nine predictor variables each with 50 
observations and response variable were 
generated with the following setting: The nine 
covariates are drawn from multivariate normal 
distribution with mean vector equal to Zero and 
covariance matrix equal to the identity matrix. 
And the response variable Y is simulated in 
accordance with the model; 
 

yi= 0+ 1xi1 + 2xi2 + ... + 9xi9+ εi 

 
Where the intercept is set to 1 and the error term 
is generated from the N(0,1) distribution for all 
data sets. Three different sample sizes n = (50, 
500 and 1000) relating to small, medium, and 
large sample sizes were adopted to examine the 
effect of sample size on the performance of the 
different spike and slab priors under study.  
 
For the correlated covariates, the setup 
configuration of Tibshirani (1996) is employed 
where the nine covariates are drawn from 
multivariate normal distribution with the mean 
vector equal to Zero and variance covariance 
matrix is set to be: 
 

 = cor(xi , xj) =  . Where =0.8. 

 
In order to investigate the correct selection of the 
influential covariates, following the approach of 
Walli and Wagner (2011), three regression 
effects were set for each of the value of the 
coefficients for both the independent and the 
correlated covariates, where “2” is assigned as 
“Strong effects”, “0.2” as “Weak effects”, and “0” 
as “Zero effects”. This is done such that the 
coefficient vector for independent covariates is 
set to be: 
 
β'=(2, 2, 2, 0.2, 0.2, 0.2, 0, 0, 0) 
 
And for the simulation with correlated covariates, 
the coefficient vector is set to be: 
 
β'=(2, 2, 0, 2, 0.2, 0, 0, 0.2, 0.2) 
 
For each data set, MCMC is run for M=1000 
iteration without burn in, and the coefficient 
estimation and variable selection is performed 
jointly. 
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Sample Size Effect 
 
The estimated coefficients and their respective 
standard deviations for each of the different priors 
under study are displayed in Table1. The results 
show that at n=50, the mean of the estimate is 
close to the true coefficient values for both strong 

and zero effects but smaller for weak effect, 
whereas the same result was also recorded at 
n=500 but with a little improvement to weak 
effect. Finally, at n=1000, the mean estimates of 
all the covariates are close to their respective 
true coefficient values. 

 
 

Table1: Simulation Results for Different Priors under Different Sample Sizes. 

Sample Size  Independent 
Prior 

Zellner’s g 
prior 

NMIG 
prior 

SVSS 
prior 

Coef. Std. dev Coef. Std. dev Coef. Std. dev Coef. Std. dev 
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Figure 1: Independent Covariates: Plots of the Posterior Inclusion Probabilities. 
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Figure 2: Correlated Covariates: Plots of the Posterior Inclusion Probabilities. 

 
 
Performances of Variable Selection  
 
Procedures: For the strong covariates, the 
inclusion probabilities are equal to one under the 
four selected priors for the two groups of variance 
components. This implies that the strong 
coefficients are sampled from only the slab 
components of the priors, for any chosen variance 
size either large or small. However, for weak 
coefficients, the choice of the size of prior 
variance has impact on the inclusion probabilities. 

If the size of prior variance is large, the inclusion 
probabilities are low, and if the size of prior 
variance is small, the inclusion probabilities are 
slightly high. This implies that the lower the size 
of the prior variance the higher the inclusion 
probabilities. For the zero effect, the similar result 
is obtained as those of weak coefficient. 
 
As for the correlated covariates, the results 
obtained are actually very similar to those 
obtained under independents covariates.  
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It is observed that errors have increased compare 
to those of independent covariates. This is as a 
result of presence of collinearity, yielding large 
estimation errors.  
 
 
DISCUSSION OF RESULTS  
 
The performance of the four different selected 
most popular spike and slab priors in the literature 
were compared, which are, Independent prior, 
Zellner’s g-prior, SVSS-prior and NMIG-prior.  The 
aim of this study is to show or otherwise, that the 
four selected priors perform differently due to 
different location and variance parameters under 
different scenarios. The results obtained from the 
simulation study are as follows:  
 
The four selected priors performed similar under 
the same sample size. At n=50, the mean of the 
estimate is close to the true coefficient values for 
both strong and zero effects but smaller for weak 
effect, whereas the same result was also recorded 
at n=500 but with a little improvement to weak 
effect. Finally at n=1000, the mean estimates of all 
the covariates are close to their respected true 
coefficient values. For independent covariates, it 
was revealed that, for strong effect and zero 
effect, the mean of the estimate is close to the 
true coefficient, while it is smaller for weak effect. 
In line with this result, it can be concluded that a 
large prior variance caused negligible shrinkage.  
 
Also the result of the small variance group is 
somewhat similar to that of the large variance 
group but its square error (SE) is a little bit higher 
than that of large variance group most especially 
for strong effect. It can also be observed that 
independent prior, g-prior and NMIG prior 
performed rather similar, with low square error 
under large component group and higher square 
error under small variance component group. 
Whereas SVSS-prior has lower square error 
under small variance group compare to large 
variance group. The results also reveal that the 
strong coefficients are sampled from only the slab 
components of the priors, for any chosen variance 
size either large or small. If the size of prior 
variance is large, the inclusion probabilities are 
low, and if the size of prior variance is small, the 
inclusion probabilities are slightly high. 
 
For correlated covariates, the results obtained are 
actually very similar to those obtained under 
independents covariates. Under all priors, the 
mean estimates for strong and zero effect are 

close to the true values while the estimates of the 
weak effects are underestimated. It is observed 
that errors have increased compare to those of 
independent covariates. This is as a result of 
presence of collinearity, yielding large estimation 
errors. The estimation accuracy is not 
significantly affected by the correlation among the 
covariates.  
 
 
CONCLUSIONS 
 
In general, it can be concluded that: all the four 
priors considered in this study have quite similar 
results under the same scale setting of 
parameters of the prior variances. The mean 
estimates of the coefficients gets closer to the 
true coefficient values as the sample size 
increases under all different priors. As the 
variance’s size increases, the posterior inclusion 
probability for weak and zero effect decreases. 
Thus, posterior inclusion probability depends on 
the size of variance of the slab component. The 
priors are unable to differentiate between weak 
effect and zero effect. Both effects are either 
simultaneously included or excluded in the 
model. The selected priors perform similar under 
both Independent and Correlated covariates 
setup. However, the standard errors of coefficient 
estimates are higher for correlated covariates 
compare to independent covariates. 
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