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ABSTRACT 
 
The usage of Lean Six Sigma (LSS) in 
manufacturing industries has been a major 
research theme. Industries have combined 
different LSS tools and techniques based on their 
suitability to the company’s process, on the level 
of awareness of the tool and available knowledge. 
These combinations bring about questions 
bordering on the level of usage of individual tools, 
thus the need to comprehensively deconstruct 
their cluster usage, identify the most used tool, 
and make recommendations.  
 
This work uses principal component analysis 
(PCA) to identify the most dominant tool used in 
selected Nigerian manufacturing companies. The 
analysis is done using the PCA tool box in the 
Statistical Package for Social Science (SPSS) and 
the result shows that Jidoka is mostly used in 
conjunction with other LSS tools. 

 
 (Keywords: Lean Six Sigma, LSS, principal component 

analysis, PCA) 
 
 
INTRODUCTION 
 
Lean Six Sigma (LSS) is a combination of well-
known waste elimination and process 
improvement techniques - Lean Manufacturing 
and Six Sigma (Zhang, Irfan, Khattak, Xiaoning, 
Hassan, 2012). It is a continuous improvement 
methodology that aims to reduce the costs of poor 
quality, improve the bottom-line results, and 
create value for both customers and shareholders 
(Jiju, Albliwi, Abdul Halim Lim, Wiele  2014), and 
offer companies many advantages (Pojasek, 
2013).  
 
 
 

LSS offers a dual approach for variation 
reduction and provides customers with a product 
that meets their needs precisely (Langston, 
2015). While the Lean strategy takes care of 
waste across all processes and focuses on 
speed and time, the Six Sigma strategy focuses 
on design, eliminating defects, driving out 
process variability as well as reducing costs 
(Andersson, Hilletofth, Manfredsson, Hilmola, 
2014).  It has been used severally by large 
organizations with standing success story such 
as Motorola, General Electric, Honeywell, 
Caterpillar, and many others. 
 
Principal Component Analysis (PCA) is a 
dimensionality reduction technique that creates a 
smaller number of components or factors from 
relatively large series of data that allows for the 
easy interpretation. These new components 
(Principal Components) account for most of the 
variance in the original variables Ringnér (2008). 
It is a technique used to emphasize variation and 
bring out strong patterns in a dataset.  It is a 
simple non-parametric technique for extracting 
information from complex and confusing data 
sets. Principal component analysis is focused on 
the maximum variance amount with the fewest 
number of principal components. 
 
 
Lean Six Sigma Tools and Techniques 
 
DMAIC Framework: The tools of LSS are most 
often applied within a simple performance 
improvement model known as Define-Measure-
Analyze-Improve-Control (DMAIC). In Table 1, a 
comparison of Six Sigma and Lean 
manufacturing shows the synergy between them 
and how they combine under the DMAIC 
framework to form a structured methodology for 
improving process and product performance. 
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Table 1: Overview of the DMAIC Framework. 
 

Process Six Sigma Lean Manufacturing 

Define Identify (select) 
process suitable for 
improvement. 

Specify value from 
customer stand point -
voice of the customer. 

Measure Determine what and 
how to measure 
performance of 
selected process 

Identify value stream: 
Current state mapping 

Analyze/Flow Understand the 
variables that create 
process variations. 

Analyze the current 
value stream map. 

Improve Identify means to 
remove causes of 
defects and modify 
process. 

Improve Process Flow: 
Invent future value 
stream. 

Control Maintain improvement Perfect future map: 
Sustain the continuous 
improvement. 

 
 
Use of DMADV Procedure: Stands for Define, 
Measure, Analyze, Design and Verify. 
 
The Define stage identifies the goals of the design 
activity. The what, why, and relevance of the 
desired activity is clearly outlined. The goals 
(activities) are consistent with customer demands 
and enterprises strategy. 
 
At the Measure stage, critical to stakeholder 
metrics are determined and customer 
requirements are translated into project goals. 
During the Analyze phase, the options available 
for meeting the goals clearly evaluated, while the 
performance of similar best-in-class designs are 
determined. 
 
In the Design phase, the new product, service or 
process is drawn using predictive models, 
simulation, prototypes, pilot runs, etc. to validate 
the design concept’s effectiveness in meeting 
goals. 
 
The Verify phase is simply to verify the design’s 
effectiveness in the real world. 
 
 
Value Stream Mapping: Value stream mapping 
is the process of identifying all the specific 
activities required to bring a specific product 
through the critical management tasks of any 
business: the problem-solving task running from 
concept through detailed design and engineering 

to production launch, the information 
management task running from order-taking 
through detailed scheduling to delivery, and the 
physical transformation of raw materials to a 
finished product in the hands of the customer. 
 
 
Kaizen: Kaizen is a Japanese word for 
continuous endeavor for perfection. It is a 
systematic approach to gradual, orderly, 
continuous improvement in a manufacturing 
setting which can include reduction of defective 
parts, reduction of inventory, etc. 
 
 
Kanban: This is a card or sheet which serves as 
a specific tool which authorizes production or 
movement. Kanban for an item is determined by 
the demand rate for an item and the time 
required to produce and acquire more. This 
number is generally being established and 
altered dramatically; in this way inventory is kept 
under control while production is forced to keep 
pace with shipment volume. All production and 
movement of parts and movement take place 
only as required by a downstream operation 
which means card or sign, but it can also be 
legitimately referring to a container or other 
authorizing device.  
 
 
Just In Time: Just In Time is a production 
philosophy that involves a company producing 
the right product at the right time in the right 
quantity in response to demand pattern. It is used 
as an inventory control system in most 
organizations and it consist of JIT production, JIT 
distribution, and JIT purchasing. 
 
 
Single Minute Exchange of Die (SMED): Also 
known as Quick Changeover, SMED is the 
process of converting a line from one type of 
product to another. It involves designing 
production line to minimize that time to whilst 
increasing production flexibility. Its key lies in 
studying and separating internal and external 
activities in changeover so that production can 
continue while changeover occurs. 
 
 
Mistake Proofing: Mistake proofing is thinking 
about the design of the products and production 
and designing ways to prevent mistakes. It is also 
called Poka Yoke. 
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Cellular Manufacturing: This is the arrangement 
of equipment and workstations in an order that 
maintains smooth flow of materials and 
components through the process. Cellular 
manufacturing helps to reduce work in process 
inventory, utilize space, identify can use and effect 
of machine problems amongst others. 
 
 
Jidoka: This is the practical use of automation to 
mistake-proof the detection of defects and free up 
workers to perform multiple tasks within work 
cells. 
 
 
5 S- (Sort, Set, Straighten, Shine, Sustain): 
This is a five step tool which is used for good 
housekeeping and better workplace organization. 
It entails sorting through the contents of an area 
and removing unnecessary items, (set in order) 
arranging necessary items for easy and efficient 
access, and keeping them that way, straighten to 
have the right items in the right area, shine or 
clean everything, and keep  the workplace 
methodically, and maintain (sustain) a high 
standard of housekeeping and workplace.  
 
 
Failure Mode Effect Analysis (FMEA): The 
FMEA is a design tool used to systematically 
analyze postulated component failures and 
identify the resultant effects on system operations. 
Successful development of a FMEA requires that 
the analyst include all significant failure modes for 
each contributing element or part in the system. 
FMEAs can be performed at the system, 
subsystem, assembly, subassembly or part level. 
It should be scheduled and completed 
concurrently with the design. FMEAs are usually 
based on function, design (concept & detailed), 
and process. 
 
 
Fishbone Diagram: Also known as the Ishikawa 
diagram, or Cause and Effect diagram, the 
Fishbone diagram is a tool that is used to 
organize and graphically display all of the 
knowledge a group has relating to a particular 
problem. Usually, the steps include developing a 
flow chart of the area to be improved, defining the 
problem to be solved, brainstorming to find all 
possible causes of the problem, organizing the 
brainstorming results in rational categories, and 
drawing a cause and effect diagram that 
accurately displays the relationships of all the data 
in each category. 

Design of Experiments: Design of 
experiments (DOE) is a systematic method to 
determine the relationship between factors 
affecting a process and the output of that 
process. In other words, it is used to find cause-
and-effect relationships. This information is 
needed to manage process inputs in order to 
optimize the output. 
 
 
Statistical Process Control & Control Charts:  
Statistical process control (SPC) is an effective 
method of monitoring a process through the use 
of control charts. The data from measurements of 
variations at points on the process map is 
monitored using control charts. Control charts 
attempt to differentiate “assignable” (special) 
sources of variation from “common” sources. 
Common sources are expected part of the 
process, and are of much less concern to the 
manufacturer than assignable sources. Using 
control charts is a continuous activity, ongoing 
over time. SPC is used to understanding the 
process and the specification limits, eliminate 
assignable (special) sources of variation, so that 
the process is stable and monitor the ongoing 
production process using the use of control 
charts to detect significant changes of mean or 
variation. 
 
 
Quality Function Deployment: QFD is a 
customer-driven process for planning products 
and services. It starts with the voice of the 
customer, which becomes the basis for setting 
requirements. QFD matrices, sometimes called 
the house of quality, are graphical displays of the 
result of the planning process. QFD matrices vary 
a great deal and may show such things as 
competitive targets and process priorities. The 
matrices are created by interdepartmental teams, 
thus overcoming some of the barriers which exist 
in functionally organized systems. 
 
 
Applications of Principal Component Analysis 
 
PCA has been used severally in different 
industries and sectors. Grané and Jach (2014) 
used PCA in multivariate regression in the food 
science and technology industry. In Geographic 
Information Systems (GIS) modeling, Petrişor, 
Ianoş, Iurea, Maria-Nataşa (2012), Principal 
Component Analysis is used to pinpoint the input 
variables that best account for the level of 
development, describing economic, social, 
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demographic, education, infrastructure and 
cultural aspects. Yeung and Ruzzo (2001) used 
PCA in analyzing data from DNA expressions. 
Érica, Nascimento and Martins (2012), Ingunn 
and Bauer-Brandl (2012) have also demonstrated 
the use of PCA in the pharmaceutics industry. In 
artificial intelligence, Chen, Chang and Huang 
(2010) proposed a learning algorithm for 2D-PCA 
for solving problems in facial expression 
recognition and object recognition; Zhou and 
Shang (2012) proposes a method of principal 
component analysis (PCA) for solving complex 
structure problems in using probabilistic neural 
network (PNN) to recognize human speaker 
recognition system. In manufacturing, Multiway 
Principal Components Analysis (MPCA) methods 
was used by Thieullen, Ouladsine and Pinaton 
(2013) to analyze data from equipment behavior 
and process dynamics in a semiconductor 
manufacturing context; Hachicha, Masmoudi, 
and Haddar (2006) used PCA to solve a problem 
of machine cell formation in designing a cellular 
manufacturing system. 
 
 
Lean Six Sigma Tools and Techniques to PCA 
In most industries, the selection of use of the LSS 
tool or technique is dependent on the type of 

process being used and suitability to the 
company’s framework. This selection is also 
based on level of awareness of the tool and 
available knowledge. Oftentimes, these tools are 
used concurrently with each other as fit to the 
organization. Questions about the coeval use of 
each tool and technique arises, thus there is 
need to comprehensively deconstruct their 
cluster usage, identify the most used tool and 
make recommendations. 
 
 
METHODOLOGY 
 
The information about the use of various LSS 
tools and techniques from various organizations 
was collected via a questionnaire developed 
based on different tools as explained by Shah 
and Ward (2003), Rahman et al (2010), and 
Bhamu and Sangwan, (2013).  A 5 –point Likert 
scale (never used, seldom used, sometimes 
used, often used, almost always used) indicating 
the level of use of the various tools. This method 
of data collection for research is suitable for 
analyzing lean manufacturing tools and 
techniques used in manufacturing companies in 
Nigeria. Using SPSS software, the Principal 
Component Analysis toolbox 

 
 

 

Figure 1: An Overview of Lean Tools. 
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RESULTS ANALYSIS 
 
Kaiser-Meyer-Olkin Measure of Sampling 
Adequacy 
 
The KMO and Bartlett’s test of Adequacy shows 
the justification for performing a data reduction 
procedure. In this test, the KMO which is relatively 
high (0.902) indicates that there is at least one 
statistically significant correlation in the correlation 
matrix.  
 

Table 2: The KMO and Bartlett’s Test 
 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .902 

Bartlett's Test of 
Sphericity 

Approx. Chi-Square 838.072 

Df 136 

Sig. .000 

 
 
The Scree Plot  
 
The Scree plot is a plot with eigenvalues on the 
ordinate and component number on the abscissa. 
Scree is the rubble at the base of a sloping cliff. In 
a scree plot, scree is those components that are 
at the bottom of the sloping plot of eigenvalues 
versus component number. 
 

 
Figure 2: The Scree Plot of Components. 

 
The plot provides a visual aid for deciding at what 
point including additional components no longer 
increases the amount of variance accounted for 
by a nontrivial amount, in essence, it helps to 
know the number of components to extract. In the 
scree plot produced by SPSS above, the major 
break in the components lies in the component 2. 
This shows that the most significant contribution 
would come from two components and indicates 
that the analysis would be best performed using 
two components. 
 
 
Commonalities 
 
The commonalities (Table 3) are based on the 
two components being extracted from the data. 
The commonalities represent the percentage of 
variance that is being accounted for by the 
components analysis. Jidoka (77.5%), Kanban 
(73.7%) and Mistake Proofing (72.3%) have the 
highest variances that are been explained by the 
analysis. 5.5% of the variability of Quality 
Function Deployment is only explained for by the 
component analysis. 
 
 
The Component Matrix 
 
The Component matrix (Table 4) shows the 
unrotated solution method of extraction. Since 
our goal is the oblique component. 
 
 
The Pattern Matrix 
 
The pattern matrix (Table 5) describes the 
oblique rotated solution for extraction of 
components. It helps to identify the nature of the 
extracted components. For component 1, Jidoka 
has the strongest loading (0.947) while 5S has 
the lowest negative showing (-0.004). 
Component 2 has the highest positive loading in 
Control charts (0.871) with DOE (0.762), and 5S 
(0.7) closely following. 

 
 

Table 3: The Commonalities in Extraction. 
 

TOOLS DMAIC DMADV VSM KAI KAN JIT SMED MISPR CM JID 5S FMEA FISBO DOE SPC CC QFD 

Initial 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Extraction 0.47 0.675 0.424 0.514 0.737 0.6 0.673 0.723 0.587 0.775 0.487 0.659 0.67 0.683 0.633 0.68 0.055 
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Table 4: The Component Matrix. 
 

TOOLS MISPR FISBO FMEA JID KAN DMADV SMED CM JIT DMAIC KAI SPC VSM DOE CC 5S QFD 

Component 
1 0.849 0.818 0.805 0.803 0.802 0.793 0.769 0.755 0.75 0.682 0.676 0.649 0.64 0.634 0.484 0.47 0.153 

2 -0.05 0.024 -0.103 -0.36 -0.307 0.213 -0.286 -0.13 -0.19 -0.076 -0.24 0.46 -0.12 0.53 0.669 0.516 0.178 

 
 
 

Table 5: The Pattern Matrix for Extraction. 
 

 TOOLS 
  

JID KAN SMED JIT FMEA KAI MISPR CM FISBO DMAIC VSM DMADV CC DOE 5S SPC QFD 

Component 
1 0.947 0.905 0.861 0.775 0.751 0.748 0.747 0.731 0.664 0.627 0.626 0.498 -0.11 0.122 -0.04 0.19 -0.01 

2 -0.168 -0.109 -0.095 0 0.116 -0.07 0.186 0.069 0.259 0.11 0.051 0.459 0.871 0.762 0.7 0.689 0.239 

 
 
 
 
 
The Correlation Matrix 
 
Component analysis is used to reduce the 
variance of each variable in a standardized 
format. Overall, there is positive correlation 
between usage of the LSS tools studied. A brief 
overview of the correlation matrix indicates that a 
number of the tools and techniques of LSS have 
been used concurrently in varying degrees.  
 
The use of DMAIC with DMADV (0.635), Kanban 
(0.516), Just in Time (0.531), Mistake proofing 
(0.526), Jidoka (0.572), and Failure Mode Effect 
Analysis (0.534) have been higher compared to 
the other tools. Similarly, DMADV has been used 
more often with the DMAIC methodology (0.535), 
Just in Time (0.611), Mistake proofing (0.674), 
and Fishbone diagram (0.615) when compared 
with others.  
 
Value Stream Mapping is being used more with 
Kaizen, Single Minute Exchange of Die, Mistake 
proofing, and Fishbone diagram. Kaizen is used 
more with Kanban (0.7) and Mistake proofing 
(0.6), its simultaneous use with DMAIC, VSM, JIT, 
Single Minute Exchange of Die (SMED), and 
Jidoka, usage of Kaizen is the same. Worthy of 
note is that Kaizen is not been used with Quality 
Function Deployment QFD(0).  
 
Kanban usage with all other tools is relatively high 
except for QFD (0.1), Control Charts (0.27), 
Design of Experiment DOE (0.29), and 5S (0.27) 
which shows. 5S (0.2) and QFD (0.1) are least 
used with Just in time as LSS tools in 

organization. 5S (0.158), CC (0.189), and QFD 
(0.103) are the least used with SMED. 5S 
(0.321), CC (0.387), and QFD (0.11) are the least 
used with Mistake proofing.  
 
Also, the matrix (Table 6) shows the use of 
Cellular manufacturing CM with Jidoka (0.7), 
SMED (0.63), Mistake proofing (0.66) as the 
highest and QFD (0.1) as the lowest. QFD 
(0.091), CC (0.111), SPC (0.291), and 5S (0.246) 
are least used with Jidoka.  
 
The use of 5S with other tools is comparatively 
low; its application with DOE (0.54) is the highest. 
FMEA is almost equally used with CC (0.312) 
and QFD (0.097). The use of Fishbone diagrams 
with other tools is similar to the use of  FMEA. It 
is almost equally used with the other tools except 
for CC (0.347) and QFD (0.138). DOE use with 
JIT (0.39), Jidoka (0.38), VSM (0.36), SMED 
(0.34), Kaizen (0.33), Kanban (0.29), and QFD 
(0.15) are relatively low.  
 
The application of Statistical Process Control 
SPC with a variety of LSS tools is low especially 
Jidoka (0.291) and QFD (0.115). Control Charts 
and Quality Function Deployment are the least 
used tools with others. This might be not 
unconnected to their popularity. QFD and Control 
Charts are thus outlier tools. 
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Table 6: The Correlation Matrix. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7: The Structure Matrix. 
 

 TOOLS JID KAN MISPR SMED FMEA FIBO JIT CM KAI DMADV DMAIC VSM CC DOE SPC 5S QFD 

 COMPONENT 
1 0.868 0.853 0.834 0.816 0.805 0.786 0.775 0.764 0.715 0.714 0.679 0.65 0.301 0.481 0.513 0.325 0.104 

2 0.278 0.316 0.538 0.31 0.469 0.571 0.364 0.414 0.281 0.694 0.405 0.345 0.82 0.82 0.778 0.698 0.235 

 
 
 
 
The Structure Matrix 
 
The Structure Matrix (Table 7) shows the 
correlation between each tool and their respective 
component in the analysis. 
 
 
The Component Correlation Matrix 
 
The Component Correlation matrix (Table 8) 
shows the correlation between the two 
components extracted. The correlation between 
components 1 and 2 is positive and correlate with 
each other to a fair degree. 

 
Table 8: The Component Correlation Matrix. 

 
Component Correlation Matrix 

Component 1 2 

1 1.000 .471 

2 .471 1.000 

 

Total Variance Explained  
 

The Extracted Sum of loadings (Table 9) are the 
eigen values for each components extracted, 
8.312 and 1.737 for components 1 and 2 
respectively while the cumulative percentage of 
variance for component 1 and 2 is 48.89% and 
59.11% respectively.  
 
The rotated components solutions of the eigen 
values (oblique) are 7.899 and 4.747 for 
components 1 and 2 respectively. 
 
Table 10 shows the Component Score 
Coefficient Matrix.   
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Table 9: Total Variance of Extracted Components. 

Extraction 
Sums of 
Squared 
Loadings 

Total 8.312 1.737 

% of Variance 48.893 10.218 

Cumulative % 48.893 59.111 

Rotation 
Sums of 
Squared 
Loadings 

Total 7.899 4.747 

 
 
 

Table 10: Total Component Score Coefficient Matrix. 
 

Component DMAIC DMADV VSM KAI KAN JIT SMED MISPR CM JID 5S FMEA FISBO DOE SPC CC QFD 

1 0.09 0.062 0.092 0.113 0.138 0.115 0.131 0.106 0.107 0.146 -0.02 0.109 0.092 -0.01 0.01 -0.04 -0.01 

2 0.023 0.155 0.001 -0.046 -0.065 -0.021 -0.059 0.048 0.005 -0.09 0.257 0.022 0.077 0.276 0.248 0.323 0.088 

 
 
 
 
SUMMARY 
 
From the commonalities matrix, Jidoka accounts 
for the highest percentage of variance explained 
by the component analysis, and this evident is 
from the pattern matrix. In terms of usage with 
other tools, Jidoka and Failure Mode Effect 
Analysis indicate a higher correlation with other 
tools examined.  
 
Single Minute Exchange of Die (SMED) and 
Statistical Process Charts recorded low usage 
with other tools, it is recommended that they are 
used in conjunction with other. Other techniques 
such as Design of Experiment, Fishbone diagram, 
5S, Control Charts, and Cellular manufacturing 
which have been used sparingly give better 
results when used often more and increase 
accuracy in process yields.  
 
In all, the various tools have their advantages and 
disadvantages in different manufacturing 

environment. Further research can be done on 
the implementation of each tool in specific 
production setup. 
 
 
REFERENCES 

 
1. Andersson, R., P. Hilletofth, P. Manfredsson, and 

Olli-Pekka Hilmola. 2014. “Lean Six Sigma 
Strategy in Telecom Manufacturing”.  Industrial 
Management & Data Systems. 114(6):904-921. 
 

2. Bollen, J., H. Van de Sompel, A. Hagberg, and R. 
Chute. 2009. “A Principal Component Analysis of 
39 Scientific Impact Measures”. PloS one. 4(6): 
e6022. 
 

3. Nascimento, E.C.M. and J.B.L. Martins. 2012. 
Pharmacophoric Profile: Design of New Potential 
Drugs with PCA Analysis. DOI: 10.5772/37426.  
 

4. Chen, L.H., Po-Lun Chang, and Chun-Hong 
Huang. 2010. “Learning for Two-Dimensional 
Principal Component Analysis”. 2010 3rd IEEE 

 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Initial 
Eigen 
values 

Total 8.312 1.737 0.992 0.882 0.838 0.676 0.558 0.515 0.449 0.423 0.357 0.324 0.25 0.202 0.178 0.16 0.146 

%   
Variance 

48.893 10.218 5.834 5.187 4.931 3.975 3.284 3.03 2.64 2.489 2.102 1.906 1.47 1.19 1.049 0.943 0.859 

Cumu-
lative % 

48.893 59.111 64.945 70.132 75.063 79.039 82.323 85.353 87.993 90.481 92.583 94.489 95.959 97.149 98.198 99.141 100 

http://www.akamaiuniversity.us/PJST.htm


The Pacific Journal of Science and Technology               –222– 
http://www.akamaiuniversity.us/PJST.htm                                                Volume 19.  Number 1.  May 2018 (Spring) 

International Conference on Ubi-Media Computing, 
Jinhua, China. 217-221. doi: 
10.1109/UMEDIA.2010.5544464 
 

5. Grané, A. and A. Jach. 2014. “Applications of 
Principal Component Analysis (PCA) in Food 
Science and Technology”. Mathematical and 
Statistical Methods in Food Science and 
Technology. John Wiley & Sons, Ltd.: Chichester, 
UK. doi: 10.1002/9781118434635.ch05 
 

6. Ingunn, T. and A. Bauer-Brandl. 2012. 
“Chemometrics (PCA) in Pharmaceutics: Tablet 
Development”. Manufacturing and Quality 
Assurance. DOI: 10.5772/37185.  

 
7. Jiju, A., S. Albliwi, S.A. Halim Lim, and T. van der 

Wiele. 2014. “Critical Failure Factors of Lean Six 
Sigma: A Systematic Literature 
Review”. International Journal of Quality & 

Reliability Management. 31(9):1012 – 1030. 
 

8. Langston, T.D. 2015. “Using Lean Six Sigma to 
Improve Quality and Reduce Inspection of 
Transmission Line Tower Foundation 
Construction”. Available from ProQuest 
Dissertations & Theses Global. 
http://search.proquest.com/docview/1729170207?accountid=1
72684. 
 

9. Alexandru-Ionuţ Petrişor, Ioan Ianoş, Daniela Iurea, 
Maria-Nataşa Văidianu. 2012. “Applications of 
Principal Component Analysis Integrated with GIS”. 
Procedia Environmental Sciences. 14:247-256, 

ISSN 1878-0296, 
https://doi.org/10.1016/j.proenv.2012.03.024.  
 

10. Ringnér, M. 2008. “What is Principal Component 
Analysis?”. Nature Biotechnology. 26(3):303-304. 
 

11. Thieullen, A., M. Ouladsine, and J. Pinaton. 2013. 
“Application of Principal Components Analysis to 
Improve Fault Detection and Diagnosis on 
Semiconductor Manufacturing Equipment”. 2013 
European Control Conference (ECC): Zurich, 
Switzerland. 1445-1500.  
 

12. Hachicha, W., F. Masmoudi, and M. Haddar. 
2006. “Principal Component Analysis Model for 
Machine-Part Cell Formation Problem in Group 
Technology”. Paper presented at The International 
Conference on Advances in Mechanical 
Engineering and Mechanics, ICAMEM 
2006, Tunisia. 
 

13. Yeung, K.Y. and W.L. Ruzzo. 2001. “Principal 
Component Analysis for Clustering Gene 
Expression Data”. Bioinformatics. 17(9):763–774. 
https://doi.org/10.1093/bioinformatics/17.9.763. 
 

14. Zhang, Q., M. Irfan, M.A.O. Khattak, Z. Xiaoning, 
and M. Hassan. 2012. “Lean Six Sigma: A 

Literature Review”. Interdisciplinary Journal of 
Contemporary Research in Business. 3(10). 
 

15. Zhou, Y. and L. Shang. 2012. “Speaker 
Recognition Based on Principal Component 
Analysis and Probabilistic Neural Network. 
Advanced Intelligent Computing Theories and 
Applications, With Aspects of Artificial 
Intelligence”. ICIC 2011. Lecture Notes in 
Computer Science. Vol. 6839. Springer: 
Heidelberg, Germany. 
 

 

SUGGESTED CITATION 
 
Odeyinka, O.F. and C. Nwoye. 2018.  “A 
Principal Component Analysis of Lean Six Sigma 
Tools and Techniques. Pacific Journal of Science 
and Technology. 19(1):214-222. 
 
 

Pacific Journal of Science and Technology 

http://www.akamaiuniversity.us/PJST.htm
http://www.akamaiuniversity.us/PJST.htm

