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ABSTRACT 
 
Ordinary Least-Squares (OLS) estimators for a 
linear model are very sensitive to unusual values 
in the design space or outliers among response 
values. Even single atypical value may have a 
large effect on the parameter estimates. In this 
paper, we propose a new class of robust 
regression method for the classical linear 
regression model. The proposed method was 
developed using regularization methods that allow 
one to handle a variety of inferential problems 
where there are more covariates than cases. 
Specifically, each outlying point in the data is 
estimated using case-specific parameter. 
Penalized estimators are often suggested when 
the number of parameters in the model is more 
than the number of observed data points. In light 
of this, we propose the use of Ridge regression 
method for estimating the case-specific 
parameters.  
 
The proposed robust regression method was 
validated using Monte-Carlo datasets of varying 
proportion of outliers. Also, performance 
comparison was done for the proposed method 
with some existing robust methods. Assessment 
criteria results using breakdown point and 
efficiency revealed the supremacy of the 
proposed method over the existing methods 
considered.  
 

(Keywords: robust regression, case indicator, Ridge 
regression, outlier) 

 
 
INTRODUCTION 
 
The most widely used technique for fitting models 
to data is Regression analysis. The multiple linear 
regression model in terms of the observations can 
be written in matrix notation as: 
 

     (1) 

where is an  vector of observed response 

values, X is the  matrix of the predictor 

variables,  is the , and ε is the  vector 

of random error terms. The aim of regression 
analysis is to find the estimates of unknown 
parameters. When a regression model is fitted 
using ordinary least squares, we get a few 
statistics to describe a large set of data. These 
statistics can be highly influenced by a small set 
of data that is different from the bulk of the data 
(McCann, 2006). OLS is not robust (even a single 
outlier can totally offset the OLS estimator). 
Some statistical techniques have been developed 
that are not so easily affected by outliers. They 
are robust methods, such as Least Median of 
Squares (LMS), Least Trimmed Squares (LTS), 
Huber M Estimation, MM Estimation, Least 
Absolute Value Method (LAV) and S Estimation 
(Yu et al., 2014). 
 
M-estimates (Huber, 1981) are solutions of the 
normal equation with appropriate weight 
functions. They are resistant to unusual  

observations, but sensitive to high leverage 
points on x, hence the breakdown point of an M-

estimate is . The quartile based estimators, 

Least Median of Squares (LMS) (Siegel 1982) 
which minimize the median of squared residuals, 
Least Trimmed Squares (LTS) (Rousseeuw, 
1983) which minimize the trimmed sum of 
squared residuals, and S-estimates (Rousseeuw 
and Yohai, 1984) which minimize the variance of 
the residuals all have high breakdown point but 
with low efficiency. Generalized S-estimates (GS-
estimates) (Croux et al., 1994) maintain high 
breakdown point as S-estimates and have slightly 
higher efficiency.  
 
MM-estimates proposed by Yohai (1987) can 
simultaneously attain high breakdown point and 
efficiencies. Mallows Generalized M-estimates 
(Mallows, 1975) and Schweppe Generalized M-
estimates (Handschin et al., 1975) down weight 
the high leverage points on x but cannot 
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distinguish “good” and “bad” leverage points, thus 
resulting in a loss of efficiencies. In addition, these 
two estimators have low breakdown points when 
p, the number of explanatory variables, is large. 
Schweppe one-step (S1S) and Generalized M-
estimates (Coakley and Hettmansperger, 1993) 
overcome the problems of Schweppe Generalized 
M-estimates and are calculated in one step. They 
both have high breakdown points and high 
efficiencies. Recently, Lee et al. (2011) and She 
and Owen (2011) proposed a new class of robust 
methods based on the regularization of case 
specific parameters for each response. The case 
specific parameter stands as the bedrock of the 
current study. The approach treats an outlier as 
missing observation and try to estimates it using 
regularized as approach because the observation 
is used as a covariate on its own. This induces 
collinearity triggered by few observations. 
 
In this study, we review and describe some 
available robust methods. In addition, a simulation 
study and a real-life data application are used to 
compare different existing robust methods. The 
efficiency and breakdown point (Yu et al. 2014) 
are two traditionally used important criteria to 
compare different robust methods. The efficiency 
is used to measure the relative accuracy of the 
robust estimate compared to the OLS estimate 
when the error distribution is exactly normal and 
there are no outliers. Breakdown point is used to 
measure the proportion of outliers an estimate can 
tolerate before it goes to infinity. In this paper, 
finite sample breakdown point (Yu et al., 2014) is 

used and defined as follows: Let . 

Given any sample  denote 

the estimate of the parameter . Let  be the 

corrupted sample where any m of the original 
points of z are replaced by arbitrary bad data. 

Then the finite sample breakdown point  is 

defined as: 
 

   

where  is Euclidean norm. 

 
 
ROBUST REGRESSION BASED ON 
REGULARIZATION OF CASE-SPECIFIC 
PARAMETERS 
 
She and Owen (2011) and Lee et al. (2011) 
proposed a new class of robust regression 
methods using the case-specific indicators in a 

mean shift model with regularization method. A 
mean shift model for the linear regression is: 
  

            (2) 

 

Where , ,  

and the mean shift parameter  is non-zero 
when the ith observation is an outlier and zero 

otherwise. Due to the sparsity of s, She and 

Owen (2011) and Lee et al. (2011) proposed to 

estimate and  by minimizing the penalized 

least squares using  penalty: 

 

 (3) 
 

Where  are fixed regularization parameters for 

. Given the estimate of ,  is the OLS estimate  

with y replaced by y − γ. She and Owen (2011) 
and Lee et al. (2011) proved that the above 
estimate is in fact equivalent to the M-estimate if 
Huber’s ψ function is used. However, their 
proposed robust estimates are based on different 

perspective and can be extended to many other 
likelihoods based models. 
 
 
Proposed Robust Regression Method 
 
The robust regression method proposed here is 
based on regularization of case specific 
parameter method originally developed by She 
and Owen (2011) and Lee et al. (2011). We 
intend to modify the method using the following 
steps: 
 
1. Identification of influential (outlying) 

observations, 
 

2. Estimating the mean shift parameter  using 

Ridge Regression method, 
 

3. Estimating using OLS given  from step 2. 

 
Ridge Regression 
 
The Ordinary Least Square (OLS) methods tend 
to produce estimates that are imprecise and 
unstable, leading to poor prediction. In order to 
prevent the difficulties of the OLS method, Hoerl 
and Kennard (1970) suggested the ridge 
regression as an alternative procedure to the 
least square method in regression analysis. The 
ridge regression which is the linear 
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transformation of the least square method is 

based on adding a biasing constant  to the 

diagonal of X’X matrix before computing β’s. 
Therefore, ridge regression is given by: 
 

βridge = (X’X+ I)
-1

X’Y.                 (4)                                                                    

 

where  is the ridge parameter and I is the identity 

matrix. The value of  is appropriate between the 

interval of (0, 1). Note that if  = 0 the ridge 

estimator becomes the ordinary least square. The 

values of  will be selected by the analyst. The 

corresponding values of the ridge parameter 
produces different regression coefficient. As the 

value of  increases from zero the smaller the 

variance, the greater the biased introduced. It is 
always difficult to select the optimal value of  that 

produces the stable regression coefficients. Some 
various methods are used in selecting the 

appropriate . 
 
 
Derivation of the Proposed Procedure 
 
Consider the mean shift model: 
 

   (5) 

 

Where  is the design matrix for the mean shift 

parameter , whose column is either 1 or 0 and 

sum of each column is 1.  
 

Merging the columns of  and  to obtain  and 

likewise merging the parameters  and  to obtain 

, thus (15) becomes: 

 
    (6) 

 

If we define the constrained  as  given as: 

 

 
 
Our interest is to estimate the regularization 

parameter  using ridge regression method thus; 

minimizing . Since , estimating  leads to 

estimating  

 

Now, the partial derivative of  with respect to 

 is: 

 

 
and 

 
 
Gathering together gives the first order condition: 
 

 
 

 
 

 
 

Given the estimate of ,  is the OLS estimate  

with y replaced by y − , specifically: 

 

   (7) 
 
 
Simulation Study 
 
In this section, we compare different robust 
methods and report the mean squared errors 
(MSE) and relative efficiency of the parameter 
estimates for each estimation method. We 
compare the OLS estimate with seven other 
commonly used robust regression estimates: the 
M estimate using Huber’s ψ function (M-H ), the 
M estimate using Tukey’s bi-square function (M-
T), the S estimate, the LTS estimate, the LMS 
estimate, the MM estimate (using bi-square 

weights and  = 4.68), the LAD and the 

proposed method (PM). The data generation 
processes that follow were adapted from Yu et al. 
(2014). 
 

We generated  samples from the model: 

 

, 

 

where , . 

In order to compare the performance of different 
methods, we consider the following three cases 
for the error density of ε and independent 
variables X. 
 
 
Case I (With y direction Outlier): 
 

  - contaminated 

normal mixture with  

proportions of contamination. 
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Case II (With x direction Outlier):  
 

 - 

contaminated multivariate normal mixture with 
 proportions of 

contamination. 
 
 
Case III (With x, y direction Outlier): 
 

 – 

contaminated multivariate normal mixture and 
 with 

 proportions of 

contamination, and overall cases. The replication 
size was fixed at 1000. 
 
 
CRITERIA FOR ASSESSING THE 
ESTIMATORS PERFORMANCE 
 
 
Mean Square Error of Parameter 

 

 

 

 
 
 
Relative Efficiency of Robust Estimators 
 

 
 
Where  is the number of iteration and  is the 

number of parameters in the model. 
 
 
RESULTS 
 
In this section, we present the results of average 
MSE and RE over iterations used. The proportion 
of outliers were varied from 0.1 - 0.5. The 
proposed method denoted by (PM) is compared 
to eight other methods to examine their 
robustness and overall efficiency. 
 
 

 
 
 

Table 1: Average MSE of Various Methods over all Sample Sizes for Case I at . 
 

 

OLS LA H-M B-M MM LMS LTS S PM 

0.1 0.3504 0.0904 0.0982 0.0902 0.0677 1.9829 0.2115 0.1105 0.03720 

0.2 0.6947 0.1918 0.2403 0.2092 0.1182 7.6956 0.2907 0.1365 0.0450 

0.3 1.0874 0.4212 0.5151 0.4752 0.4158 11.284 0.5122 0.3925 0.0597 

0.4 1.4611 0.7532 0.845 0.8359 0.9152 13.392 1.4485 0.9707 0.1316 

0.5 1.8004 1.1028 1.2276 1.2752 1.4132 17.4091 2.6971 1.7331 0.2434 

 
 
 

Table 2: Average RE of Various Methods over all Sample Sizes for Case I at . 

 

OLS LA H-M B-M MM LMS LTS S PM 

0.1 7.6400 46.7900 55.6300 69.5900 72.3400 11.1400 13.9100 22.9500 89.2700 

0.2 3.6800 32.8800 31.1800 51.9800 53.2700 10.7200 12.9800 20.9400 76.7500 

0.3 2.2800 22.6200 15.5800 34.0400 32.7400 10.7600 12.6300 16.6400 65.1500 

0.4 1.6200 14.0700 6.7700 16.4800 14.5900 9.4800 11.7400 12.9000 49.5500 

0.5 1.2700 8.4100 2.9900 5.5800 4.7300 7.1400 9.7100 7.8200 39.0800 
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Table 3: Average MSE of Various Methods over all Sample Sizes for Case II at . 

 

OLS LA H-M B-M MM LMS LTS S PM 

0.1 0.5335 0.5013 0.5125 0.4515 0.0714 0.6750 0.1911 0.1153 0.0399 

0.2 0.6551 0.6913 0.6610 0.6675 0.1176 0.9939 0.2165 0.1446 0.0489 

0.3 0.7118 0.7494 0.7199 0.7290 0.4781 0.7520 0.2431 0.1993 0.0661 

0.4 0.7368 0.7665 0.7448 0.7535 0.6983 0.8745 0.3689 0.6320 0.1073 

0.5 0.7499 0.7760 0.7552 0.7611 0.7517 1.8071 0.7786 0.8003 0.2266 

 

Table 4: Average RE of Various Methods over all Sample Sizes for Case II at . 

 

OLS LA H-M B-M MM LMS LTS S PM 

0.1 8.04 6.65 7.77 7.48 40.60 11.35 14.03 21.49 86.72 

0.2 5.44 4.50 5.22 4.99 19.70 10.55 13.00 18.55 74.66 

0.3 4.52 3.92 4.36 4.18 7.41 9.42 11.82 12.85 63.14 

0.4 4.16 3.76 4.03 3.89 4.61 3.52 6.49 4.44 49.02 

0.5 4.06 3.73 3.98 3.89 4.02 1.72 3.48 3.57 39.14 

 

Figure 1: Plot of Average MSE against Outlier 
Percentages for Case I. 

 
 

 
Figure 2: Plot of Average RE against Outlier 

Percentages for Case I. 
 

Figure 3: Plot of Average MSE against Outlier 
Percentages for Case II. 

 
 

 
Figure 4:   Plot of Average RE against Outlier 

Percentages for Case II. 
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Table 5: Average MSE of Various Methods over all Sample Sizes for Case III at . 

 

OLS LA H-M B-M MM LMS LTS S PM 

0.1 0.6607 0.3936 0.4458 0.2482 0.0772 0.5076 0.1676 0.1175 0.0387 

0.2 0.8868 0.7285 0.7370 0.5461 0.1402 0.9364 0.2704 0.1750 0.0552 

0.3 1.0247 0.8763 0.8760 0.7968 0.2185 0.7385 0.2502 0.2226 0.0748 

0.4 1.2362 1.0559 1.0492 1.0050 0.4893 1.1614 0.3922 0.3783 0.1426 

0.5 1.2439 0.9327 1.0392 1.0076 0.7203 0.9175 0.2918 0.3927 0.2459 

 

Table 6: Average RE of Various Methods over all Sample Sizes for Case III at . 

 

OLS LA H-M B-M MM LMS LTS S PM 

0.1 5.67 5.88 6.35 15.72 39.86 11.84 15.28 21.55 87.35 

0.2 2.98 3.22 3.40 4.00 21.77 10.85 12.60 17.91 74.30 

0.3 2.46 2.74 2.86 2.92 11.60 10.60 12.97 14.51 63.96 

0.4 1.89 2.24 2.26 2.33 5.28 9.64 11.59 9.98 49.09 

0.5 1.93 2.66 2.35 2.40 3.82 6.86 10.69 5.78 39.73 

 
 

Figure 5: Plot of Average MSE against Outlier 
Percentages for Case III. 

 

 
Figure 6: Plot of Average RE against Outlier 

Percentages for Case III. 

DISCUSSION OF RESULTS AND 
CONCLUSION 
 
The results presented cover mean squared errors 
(MSE) and relative efficiency (RE) of the 
parameter estimates for each estimation methods 
in 1000 replications. Table 1 gives the result for 
the simulated linear regression model with 
normal distributed error and 0.1 – 0.5 proportion 
of outlier (Case I), the proposed method (PM) 
has the smallest MSE over all proportion of 
outlier, H-M, B-M and MM have similar lower 
MSE but they are not as efficient as PM. LS, 
LMS, LTS, and S has relative larger MSE due to 
outlier effect.  
 
Table 2 presents the corresponding relative 
efficiency of the methods in terms of comparing 
their MSE to the MSE of LS fitting for model 
without outlier. The result shows that proposed 
PM method was still able to achieve about 90% 
efficiency at 0.1 proportion of outlier. The next 
estimator is MM which has about 72% relative 
efficiency at 0.1 proportion of outlier. This result 
indicates that at 0.1 proportion of outlier in Y 
direction, the proposed PM method is far better 
than all existing methods considered. Similar 
results were observed at 0.2, 0.3, 0.4 and 0.5 
proportion of outlier in y direction.  
 
In general, for Y direction outlier, the proposed 
PM method was found to be relatively far better 
than any of the existing method in terms of 
efficiency. Table 1 and 2 were also used to 
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assess the breakdown of the methods, it was 
observed that the breakdown of the proposed PM 
method is 0.5 compared to other methods 
considered. 
 
Moving to leverage outlier (X- direction), similar 
results as observed under y direction outlier were 
observed. It was also observed that leverage 
outlier has more effect than the y direction outlier 
earlier discussed. Further decline in efficiency 
were observed for the (X, Y) direction outlier 
condition. Specifically, none of the existing could 
reasonable withstand 0.1 proportion of outlier.  
 
Whereas, the PM method still yielded about 90% 
efficiency at 0.1 proportion of outlier. Thus, based 
on the simulation results for Y, X, and X,Y 
directions outlier, the best estimator in terms of 
efficiency and breakdown point of at least 0.5 is 
PM. 
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