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ABSTRACT 
 
We present Gauss-Lobatto integral method with 
accurate error formula for solution of Ordinary 
Differential Equations. Legendre polynomial of 
degree three and its corresponding Lobatto 
polynomial are used as bases. Collocation 
approach is used to derive a continuous scheme. 
The collocation points are the transformed zeros 
of the Lobatto polynomial onto the positive x-axis. 
Evaluating the continuous scheme at these points, 
we obtained discrete schemes which are 
converted to Runge-Kutta function evaluations for 
the iteration of the solutions. A corresponding 
error estimation formula is derived for accurate 
calculation of error of the solutions. The method is 
highly efficient and A-stable. Some problems are 
used to test our formulas. 

 
(Keywords: Gauss-Lobatto polynomials, guadrature 

points, collocation method, Runge Kutt f-evaluations, 
error estimation, highly efficient, A-stable) 

 
 
INTRODUCTION 
 
These are many types of implicit Runge-Kutta 
methods derived by authors [4] for the integration 
of initial- value problems of ordinary differential 
equations. The common implicit method uses 
function values at predetermined (equidistant) x- 
values (nodes) which gives result for polynomial 
of degree n(for even number of nodes) and 
n+1(for odd number of nodes). However we can 
get much more accurate integration formulas by 
using Radau, Lobatto, Gauss-Legendre 
polynomials [5]. In this paper we use the 
Legendre polynomial and it’s correspond Lobatto 
polynomial to get the transformed zeros of the 
Lobatto polynomial in the interval [0,1], see 
reference  [7]. 
 
The other problem in numerical integration is to 
determine the level of accuracy of our results, 

especially problems without close form or analytic 
solutions. E. Feldberg [2] proposed and 
developed error control by using two R-K 
methods of different orders; this method is not 
quite efficient since it cannot give accurate error 
estimate, more so his method is for explicit 
methods and explicit methods are unsuitable for 
stiff or oscillation differential equation problems. 
 
In this paper we develop a simple Runge-Kutta 
method with accurate error estimation formula for 
both stiff and non-stiff problems. Some varieties 
of problems are used to test our methods. The 
new schemes are highly accurate and stable. 
 
 
METHODOLOGY 
 
We consider the general initial – value problem of 
first order ordinary differential equation:  
 

 (1) 

 
 
We seek a continuous scheme of they form: 
 

  
(2) 

 
Where t is the number of interpolation points, m 
is the number of collocation points, h is a 

constant step size.  are 

polynomial functions defined as follows: 
 

 

   (3) 
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The coefficients  are undetermined elements of  x  matrix: 

 

                 ........    .......  

C =          ........    .......          =  (4) 

             .    .      .      .         .         .     .    .        .      .     .       . . ..... 

                   ........   ......        

 
 
 
Substituting Equation (3) into (2) we have: 
  

 

            .    ..      .         .                .          .                                       (5) 

 

 
 

       .........  

 

    ) are basis functions. From Equation (5) we 

impose the following interpolation and collocation conditions. 
 

)  +  )  + ... ) =  

)  +  )  + ... ) =   ...................          (6) 

 

Define   and a D-Matrix:     

             )       )  ......... )  

 
 

D =      )       )  ..............  

          )       )  .............. )                 

    . . . . . . .  . . . . .  . . . . . .  . . . . . .  . . . .  . . .  . . . 

                           (7) 

 )       ) ........            )     

 . . . . . . . . . . . . . . . . . .  . . . .  . . . . . . . . . .. . . . .  . .    

 )    ) ......... ) 
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The matrix D is assumed non-singular. 
Then from Equation (6) and (7), we can write: 
 
 
 

              ),      ...........   

=         ........  

           . . . . . . .  . . . . .  . . . . . .  . . . . . .  . . . .  ................. 

           )       .......         

 )       ) ............                    

 . . . . . . . . . . . . . . . . . .  . . . .  . . . . . . . . . .. . ..............    

    ............  

 
 
 
Proposition: 
 
V, C, & D defined above, satisfy 

(i) C =  

(ii) 
T
  

 
Proof: See [9] 
 
Specified Method: 
 

We set   

 are the collocation points, then Equation (8) reduces to: 

 

                              ..........                                                     

 =     0            ........                                  

                    ........                              =        . 

                .  .   . . . . . .. . .  . . . . . . . . . .  .. . .  .  ...            .                  . 

                   ........                =         

 
 
Using maple mathematical software, we obtain a continuous scheme of the form: 
 

 ...................                  (10) 

 
 
Now evaluating the continuous scheme at: 
  

 

 

 

 
. 

. 

. 

 

 (8) 

(9) 
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These are the transformed zeros of Lobatto polynomial  

 is the Legendre polynomial of degree three, the transformation is defined as: 

   

 in [a,b],  are the zeros of the Lobatto polynomial]. 

 
We obtain discrete schemes as follow: 
 

 
 

                                                                                            
 

 
 

             ...        (11) 

 
To convert to Runge–Kutta function evaluations, the discrete schemes (11) must satisfy the differential 
Equation (1).  Thus, we have: 
 

 

                
..(2.12) 

  

                                                   
 

The weight of the method is  the values of , ...4 are obtained by 

evaluating the continuous scheme (2.10)  at  this we obtain: 

 

                            .   .   .    . . .           (13) 

(12) 
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Now putting   in Equation (12), we obtain the 

Runge – Kutta Solution as: 
  

         (14) 

 

Where the                

 
The method is summarized in the table (Butcher’s Tableau). 
 
 

Table 1: Butchers Tables. 
 

 
 
 
 

The table can also be rewritten in the form. 
 

Table 2 

 
 
 
 

Where the abscissae,  the coefficients of the method; 

 

 

(15) 
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METHOD ANALYSIS 
 
(i)  Consistency: The Runge-Kutta method (15) is consistent since: 
 

 
 
 
(ii)    The stability of the method is obtained by considering the linear test equation. 
 

. 

 

Putting Z =   

 
The stability function is R (Z): 
 

R (Z) = I +  

 
I, is an identity matrix. The stability region (dom (R (Z)) is the set of points in the complex plane: 
 

 . 

 
The A – stability domain, dom (R (Z)) is: 
 

  

 

(iii) Order and error constant: The exact solution of (2.01) is defined as  and the 

approximate Runge-Kutta solution is  

 
Both solutions can be expanded into Taylors Series as: 
 

  

 
and,  

 

 
                    

                         

 

Now we define a linear difference operator     

.  Expanding and expressing into one Taylor’s series we have: 
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(17) 
 
We found that: 
 

           

 

Thus the Runge – Kutta method is of order  and error constant        

(see  [3]). 
 
 
ERROR ESTIMATION FORMULAR 
 
Theorem: Any Runge-Kutta solution is of the form: 

 
 
where 
 

                                                                      (18) 

 

Where  

 
 

Proof: Let the approximate solutions with step sizes    

 

 
 
and   

  

 
The constant C is independent of the chose of step sizes since any Runge-Kutta solution can be 
expanded into Taylors series and the terms agree with Taylor’s series expansion up to order 

 are the reminder terms of each expansion. Now since the solution is 

unique, as    both approach 

zeros, they can be neglected for large p. thus (i) and (ii) can be written as: 
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and  
 

     (iv) 

 
Subtracting (iv) from (iii) we have: 
 

 
 

 
 

Since  

 

Then .  

 

Take the least upper bound of  as error estimate 

 

We have  (Error estimation formular). 

 
 
Numerical Experiments 
 
We use three problems with exact or analytic solutions to test our formulas.  
 
Notations: 
 

 
 

 
 

 
 

 
 

 = Calculated error, by method (18). 
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Example 1:  =  

 

 
 
 

Example 2:  

 

 
 
 

Example 3:   

 
 
Analytic Solution – None  
 
 

Table 3: Comparison of Solution of Problem 1. 
 

      
.1 0.140521319993349 0.140521320576694 0.140521320002440 5.83E-10 5.83E-10 

.2 0.206816303055460 0.206816304632021 0.206816303080027 1.58E-9 1.58E-9 

.3 0.307730911320427 0.307730914515468 0.307730911370216 3.20E-9 3.20E-9 

.4 0.455091782454426 0.455091788209119 0.455091782544102 5.75E-9 5.75E-9 

.5 0.664751896297314 0.664751906013248 0.664751896448720 9.72E-9 9.72E-9 

 
 

Table 4: Comparison of Solution of Problem 2. 
 

      
.01 .179408800254 .179408800370 .179408800256 1.16E-10 1.16E-10 

.02 .322743770130 .322743770319 .322743770132 1.89E-10 1.89E-10 

.03 .436614330545 .436614330777 .436614330548 2.33E-10 2.33E-10 

.04 .526430424744 .526430424998 .526430424748 2.54E-10 2.54E-10 

.05 .596619974294 .596619974554 .596619974298 2.60E-10 2.60E-10 

 
 

Table 5: Comparison of Solution of Problem 3. 
 

      
.1 - .913794328431573 .913794328451718 - 2.05E-11 

.2 - .851191238284488 .851191238330888 - 4.71E-11 

.3 - .807621623289533 .807621623356392 - 6.79E-11 

.4 - .779807312531194 .779807312610653 - 8.07E-11 

.5 - .765280591342032 .765280591426961 - 8.63E-11 
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DISCUSSION / CONCLUSION  
 
We used three test problems. The first two have 
analytic solutions while the last has none. The 
approximate solutions are highly efficient, the 

actual errors  are 

equal (see error tables). This implies that our error 
formula is accurate. The last example has no 
analytic or exact solutions, but we can deduce the 
level of accuracy from the calculated results, since 

our  is accurate we can deduce that .  

 
These methods help us to determine exact 
solutions of problems arising from mathematical 
models in science, engineering population etc., 
with no close–form or analytic solutions. Our 
method is more general and accurate than 
Feldberg method [2]. 
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