
The Pacific Journal of Science and Technology –125–
http://www.akamaiuniversity.us/PJST.htm Volume 18. Number 1. May 2017 (Spring)

Halstead Complexity Analysis of Bubble and Insertion Sorting Algorithms.

T.R. Awode1; D.D. Olatinwo2; O. Shoewu3; S.O. Olatinwo1: O.O. Omitola1; and Mary
Adedoyin3

1
Department of Computer Science and Engineering,

Ladoke Akintola University of Technology, Ogbomoso, Nigeria..
2
Department of Mathematical & Computer Science, Ekiti State University, Nigeria.

3
Department of Electronic and Computer Engineering, Lagos State University, Epe, Nigeria.

E-mail: tolulopedelight@yahoo.com

ABSTRACT

In this paper, the implementation and analysis of
two sorting algorithms, namely, bubble sort and
insertion sort, based on Halstead complexity
metrics have been discussed. The Halstead
complexity approach considers the mathematical
relationship among the variables. The two
selected sorting algorithms have been
implemented in MATLAB and compared. The
efficiency of each of the algorithms using
Halstead parameters in handling various sorting
tasks has also been discussed.

 (Keywords: Halstead complexity, bubble sort, insertion

sort)

INTRODUCTION

Computer algorithms are often analyzed for a
number of reasons that include estimation of the
run time or the storage requirements which an
algorithm needed to process a particular input.
Computer memory and time are key resources
which users often sought for simultaneously. A
good computer analysis finds the bottlenecks in a
program, by determining the time spent by each
module in a program; that is, sections of a
program where most of the time is spent. For
instance, computational complexity theory is used
to investigate the problems associated with the
amount of resources, such as time, needed to
execute an algorithm the inherent difficulty in
providing efficient algorithms for specific
computational problems.

A typical question of the theory is, ‘‘as the size of
the input to an algorithm increases, how do the
running time and memory requirements of the
algorithm change and what are the implications

and ramifications of that change.’’ In other words,
the theory investigates the scalability of
computational problems and algorithms. In
particular, the theory places practical limits on
what computers can accomplish.

The time complexity of a problem is the number
of steps that it takes to solve an instance of the
problem as a function of the size of the input
(usually measured in bits), using the most
efficient algorithm. For example, a problem that is
n-bits long can be solved in n2 steps. In this case,
the problem has a time complexity of order n2.

The Big O notation is generally used in
measuring the complexity of algorithms. If a
problem has a time complexity O(n2) on one
typical computer, then it will also have complexity
O(n2) on most other computers, therefore, this
notation allows us to generalize away from the
details of a particular computer [1].

The space complexity of a problem is a related
concept that measures the amount of space or
memory required by the algorithm. Space
complexity is also measured with Big O notation.
The existing software complexity measures such
as McCabe, Cyclomatic complexity, line of code
complexity, and Halstead metric are supposed to
cover the correctness, effectiveness, and clarity
of software and to provide good estimates of the
parameters out of the proposed measure.

Selecting a particular complexity measure is a
problem as every measure has its own
advantages and disadvantages. There are
number of ways to quantify complexity in a
program as the best metric, which provide such
features as [16] and Cyclomatic number [11]. This
therefore necessitates the need to develop a
method to measure the software complexity

http://www.akamaiuniversity.us/PJST.htm
mailto:tolulopedelight@yahoo.com

The Pacific Journal of Science and Technology –126–
http://www.akamaiuniversity.us/PJST.htm Volume 18. Number 1. May 2017 (Spring)

which combines both the quantitative and
analytical approaches in general together.

LITERATURE REVIEW

Complexity Theory

In information systems, complexity is used to
describe the efficiency of a system in terms of
time and computational capabilities in solving a
computer a problem such as sorting. McCall et al.
(1977), describes complexity as the relationship
between set of data, data structures, data flow
and the algorithm being implemented”. It
measures the degree of decision making logic
within the system. Beizer states that “using only
our intuitive notion of software complexity, we
expect that more complex software will cost more
to build and test and will have more bugs” [4].
Tourlakis (1984) study distinguished between two
classes of complexity measure that is dynamic
and static. Dynamic complexity measures the
amount of ‘resources’ consumed during a
computation. Static complexity measures on the
other hand may be size (e.g., program length) or
the structural complexity (e.g., level of nesting of
do-loops) of an algorithm’s description.

Ramamoorthy (1985) states that software
complexity is the degree of difficulty in analysis,
testing, design, and implementation of software.
We will not attempt to attach a single number to
software complexity. Instead, we discuss the
complexity of individual characteristic of
software’. Jones (1986) in his discussion on
measuring programming complexity identities
‘two logically distinct tasks: (i) measuring
complexity of the problem that is the functions
and data to be programmed; and (ii) measuring
the complexity of the solution of the problem, that
is the software itself. Shepperd writes in 1988 that
complexity is a metaphysical property and thus
not directly measurable. What is required is a
means to link the behavior of the product
characteristics that are measurable.

Banker et.al. (1989) states that software
complexity refers to the extent to which a system
is difficult to comprehend, modify and test, not
complexity of the task which the system is meant
to perform; two systems equivalent in functionality
can differ greatly in their software complexity.
They notice that, most complexity metrics
proposed confound complexity of a program with
its length. They also propose to measure length-
independent complexity metrics by measuring
‘density of decision making’ and ‘density of
branching’ within a program. Gill and Kemerer

(1991) state that “the high correlation of
cyclomatic complexity with lines of codes is given
as reason for proposing a transformed metric
‘complexity density’ defined as the ratio of
cyclomatic complexity to thousand lines of code”.

Fenton (1992) states that complexity is commonly
used as a term to capture the totality of all
internal attributes. When people talk of the need
to control complexity what they really mean is the
need to measure and control a number of internal
(structural) product attributes. He also states that
‘there appears to be three such distinct
(orthogonal and fundamental) attributes of the
software” length, functionality and complexity of
the underlying problem which the software is
solving.

Software Quality and Complexity Metric

Software quality is closely related with testing and
measurement. Fenton et al. (1997) defines
measurement as follows; “Measurement is the
process by which numbers or symbols are
assigned to attributes of entities in the real world
in such a way as to describe them according to
clearly defined unambiguous rules.” Testing
techniques tend to find defects, bottlenecks and
weaknesses of a software system. Measurement
aims to find the complexity in order to understand
the effectiveness of the software’s code.

Requirement to improve the software quality is
the prime objective, which promotes research
projects on software metrics technology. It is
always hard to control the quality if the code is
complex they are hard to review, test, maintain
and manage [3]. As a consequence, those
handicaps increase the maintenance cost and the
cost of the product. Due to these reasons, it is
strongly recommended that the complexity of the
code should be controlled from the beginning of
the software development process.

Since this research is focused on cognitive
complexity, it is worthy of mentioning that
complexity decreases the comprehensibility and
the complexity of software. Some of the factors
that affect the procedural complexity are variables
and structure for example. Some of the factors
that affect the object oriented (OO) complexity
are attributes, structures, and classes. Thus, in
order to conceive the complexity of multi-
paradigm code, the complexity factors of both of
the paradigms should be considered, since multi-
paradigm includes the features of both procedural
and OO paradigms.

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –127–
http://www.akamaiuniversity.us/PJST.htm Volume 18. Number 1. May 2017 (Spring)

Quality of Software

There are several quality attributes of software
such as security, performance, reusability,
availability, testability, correctness,
maintainability, reliability, integrity, and many
others [2]. To achieve some of those quality
attributes, complexity should be reduced. For
example, to be able to test software easily it is
necessary that the software is not complex.
Otherwise, the testing process will be harder and
thus the cost will be higher. What makes software
quality assurance unique is product complexity,
visibility, and development process. Actually,
complexity of software products has been
observed for decades. Complexity of software
product is much higher than that of other
industrial products. Visibility is another difficulty of
software quality assurance, since other industrial
products are visible but software products are not
visible until the end is reached. Software
development process differs with its development
methodologies and difficulties in finding and
removing defects [9]. Similarly, Hughes and
Cotterell (2006) state that intangibility increases
criticality of software, and accumulating defects
during development process make the software
quality unique. Furthermore, software needs to be
measured in order to understand its quality.
Otherwise, it may not be possible to make an
effective project management. One of the most
important and effective tools in assessing
software quality are to use complexity metrics
explained in the following section.

According to Galin (2004), software quality could
be broken down into six major characteristics,
which are functionality, reliability, usability,
efficiency, portability, and maintainability and
these quality characteristics are split into a
number of quality sub-characteristics. The above
mentioned product quality characteristics can be
divided into two different sets: external and
internal.

Customers care about external quality
characteristics such as: functionality, reliability,
usability, efficiency, flexibility, friendliness,
simplicity, etc simply because these are the
characteristics which can easily be seen by the
use of the product. On the other hand,
developers care about internal quality
characteristics such as: maintainability,
portability, reusability, testability, etc., because
these characteristics relate to their development
efforts.

 McCall et al. (1977) started with a volume of 55
quality characteristics which have an important

influence on quality, and called them “factors”.
For reasons of simplicity, McCall then reduced
the number of characteristics to efficiency,
accuracy, interface facility, re-usability,
maintainability, testability, reliability, usability,
flexibility, integrity, and transferability.

Related Works

During the 60

th
 and 70

th
 classic and important

metrics, Line of Codes (LOC), Halstead
Complexity Metric (HCM) and Cyclomatic
Complexity Metric (CCM) were invented and
considered to measure the software in three
different aspects, correspondingly, the length, the
volume, and the structure. With the development
of the software design method, some metrics,
which aim at special programming method, such
as the Object-Origin programming and Aspect-
programming have been introduced.

Chidamber and Kemerer Metrics

Chidamber and Kemerer (1994) proposed a
metric suite that offers informative insight into
whether developers are following object oriented
principals in their design. They claim that using
several of their metrics collectively helps
managers and designers to make better design
decision.

Chidamber and Kemerer (1994) metrics, have
generated a significant amount of interest and are
currently the most well-known suite of
measurements for object oriented software.
Chidamber and Kemerer (1994) proposed six
metrics viz;

i. Weighted Methods per Class (WMC): This

metric measures the complexity of a class. Its
value is computed as the sum of the
complexity of each individual method of the
class. For the sake of simplicity, we consider
all methods of a class to be equally complex.
Thus the value of WMC represents the
number of methods of the class.

ii. Depth of Inheritances tree (DIT): In their

study, this metric measure the number of the
ancestors of a class.

iii. Number of children (NOC): This metric

measures the number of direct descendants of
a class.

iv. Response for a Class (RFC): This metric

measures the number of methods that can be

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –128–
http://www.akamaiuniversity.us/PJST.htm Volume 18. Number 1. May 2017 (Spring)

potentially executed in response to a message
received by an object of a class.

v. Lack of cohesion in Methods (LCOM): This

metric measures the number or pairs of
methods of a class that do not share any
instance variables, minus the pairs of methods
that do. The value is zero when the
subtraction yields a negative result.

vi. Coupling between Object Classes (CBOC):

This metric measure the number of other
classes used by a class. A class uses another
class if one of its members uses a member of
the other class.

Weighted Class Complexity

Mistra and Akman (2008) proposed two metrics
for inheritance and class features of the object
oriented code. Both metrics are based on
cognitive weights. For including the inheritance
property of the object oriented code, the authors
first suggested calculating the weight of individual
method in a class by associating a number
(weight) with each member function (method),
then we simply add all the weights of all the
methods. This gives the complexity (weight) of a
single class/object. There are two cases for
calculating the whole complexity of the entire
system.

If the system consists of more than one class or
object depending on the architecture:

i. If the classes’ objects are in the same level

then their weights are added.

ii. If they are subclasses or children of their

parent then their weights are multiplied

If there are m levels of depth in the object
oriented code and level j has n classes then the
cognitive code complexity (CCC) of the system is
given by:

 


 









m

k

n

jkj CCCCC
1

1 (1)

The second metric proposed by (Mistra et al) is
based on the theme that complexity of a single
class depends on attributes and as well as on the
complexity of the methods. Accordingly, the
authors suggested Weighted Class Complexity
(WCC) as:





s

p

Pa MCNWCC
1

 (2)

Where: is the total number of attributes and

 is the complexity of method of the

class.

If there are y classes in an object oriented code,
then the total complexity of the code is given by
the sum of weights of individual classes. That is
Total Weighted Class Complexity:





y

x

XWCCTWCC
1

 (3)

Lines of Code (LOC)

The line of codes (LOC) is generally the count of
the lines in the source code of the software.
Usually, LOC only considers the executable
sentence. LOC is independent of what program
language is used. The LOC evaluates the
complexity of the software via the physical length.
LOC is based upon rules; the relationship
between the count of code lines and the bug
density, the independence between the bug
density and the program language. Also
sometimes, the LOC is estimated by other factor.

The original purpose the development of LOC
was to estimate man-hours for a project [18].
Some types of LOC include the following:

i. Lines of Code (LOC): It is obvious from its

name that it counts the number of lines which
are commented in source code. Some
developers write code statement and
comment on a same physical line. In such
cases this metric can be further defined
easily.

ii. Kilo Lines of Code (KLOC): It is LOC
divided by 1000

iii. Effective Lines of Code (ELOC): It only
counts the lines that are not commented,
black, standalone braces or parenthesis. In a
way this metric presents the actual work
performed.

iv. Logical Lines of Code (LLOC): This metric
shows the count of logical statements in a
program, it only counts the statements which
end at semi-colon. This definition of metric is
only applicable for language like C or Java,

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –129–
http://www.akamaiuniversity.us/PJST.htm Volume 18. Number 1. May 2017 (Spring)

but for languages like Haskell this metric
won’t work.

v. Multiple Line of codes (MLOC): It contains
several separate instructions, multiple line or
code like million lines of code.

vi. Comment to Code Ratio: is a derived metric
from ELOC and Line of Comment metric.
This simple and easy to compute metric can
provide hint for “understandability of the
code”. It can be obtained as follows: There
are more possible variants of LOC, for
example counting blank lines or white
spaces, etc.

Halstead Complexity Metric

In 1977, Maurice Howard Halstead introduced the
concept of software science. He began to use
scientific methods to analyze the characteristics
and structure of the software. The idea resulted in
the introduction of the Halstead Complexity Metric
(HCM). The HCM is calculated on the count of
the operators and operands [11]. The operators
are symbols used in expressions to specify the
manipulation to be performed. The operands are
the basic logic unit to be operated. The HCM
measures the logic volume of the software.
Firstly, the HCM use the following parameters:

µ1 = the number of unique operators
µ2= the number of unique operands
N1= the total occurrences of operators
N2 = the total occurrences of operands

From these statements, some indicators can be
calculated:

The length N of P:N = N1 + N2 (4)

The vocabulary µ of P; µ= µ1 + µ2 (5)

The volume V of P: V = N* log 2 (µ) (6)

The level L of P:L = (2 ÷ µ1) * log2 (µ) (7)

The program difficulty: D of P:D = (µ2÷N2) * (N2
÷ µ2) (8)

The effort E to generate P is calculated as: E=
D*V (9)

Error Estimate: B = V/X* (10)

Programming Time: T = E/18 (11)

Number of Delivered Bugs: B = E

(2/3)
/3000

 (12)

The V* is the software’s ideal volume:

V* = (µ1 N2 ÷ 2 µ2) (N1 + N2) log 2 (µ1 + µ2)

(13)

Equation 13 is commonly used to estimate the V*.
The X* means the programmer’s ability. Halstead
sets X* for a fixed value of 3000.

McCabe Cyclomatic Complexity Metric

Based upon the topological structure of the
software, Thomas J. McCabe introduced a
software complexity metric name McCabe
Cyclomatic Complexity Metric. As described by
McCabe, the primary purpose of the measure is
to identify software modules that will be difficult to
test or maintain [16]. The nodes on the graph
correspond to the code lines of the software, and
a directed edge connects two nodes if the second
node might be executed immediately after the
first one. If the conditional evaluation expression
is composite, the expression should be broken
down. For example, the expression “if (cl &c2) {}”
should be treated as “if (cl) {if(c2) { } }”. The
control flow graph of a module has one and only
one entry node and exit node. If one control flow
graph has edges and n nodes.

MC = V (G) = e-n+2p

where:

V (G) is the cyclomatic complexity

e is the number of edges of the graph

n is the number of nodes of the graph and

p is the number of connected components.

Sorting Algorithms

In this study, the common types of sorting
algorithm, namely the bubble sort and the
insertion sort algorithms were studied, compared
and analyzed.

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –130–
http://www.akamaiuniversity.us/PJST.htm Volume 18. Number 1. May 2017 (Spring)

Bubble Sort

The goal of this type of sorting algorithm is to sort
an array of elements using the bubble sort
algorithm. The elements must have a total order
and the index of the array can be of any discrete
type. For languages where this is not possible,
sort an array of integers. The bubble sort is
generally considered to be the simplest sorting
algorithm. Because of its simplicity and ease of
visualization, it is often taught in introductory
computer science courses. Because of its
abysmal O(n

2
) performance, it is not used often

for large (or even medium-sized) datasets.

The bubble sort works by passing sequentially
over a list, comparing each value to the one
immediately after it. If the first value is greater
than the second, their positions are switched.
Over a number of passes, at most equal to the
number of elements in the list, all of the values
drift into their correct positions (large values
"bubble" rapidly toward the end, pushing others
down around them). Because each pass finds the
maximum item and puts it at the end, the portion
of the list to be sorted can be reduced at each
pass. A Boolean variable is used to track whether
any changes have been made in the current
pass; when a pass completes without changing
anything, the algorithm exits [17].

Insertion Sort

If the first few objects are already sorted, an
unsorted object can be inserted in the sorted set
in proper place, this is called insertion sort. An
algorithm consider the elements one at a time,
inserting each in its suitable place among those
already considered (keeping them sorted) as
described in Figure 1. Insertion sort is an
example of an incremental algorithm; it builds the
sorted sequence one number at a time. This is
perhaps the simplest example of the incremental

insertion technique, where we build up a
complicated structure on n items by first building
it on n − 1 items and then making the necessary
changes to fix things in adding the last item. The
given sequences are typically stored in arrays.
Also, the numbers are referred to as keys. Along
with each key may be additional information,
known as satellite data.

Algorithm: Insertion Sort

It works the way you might sort a hand of playing
cards:

i. We start with an empty left hand [sorted

array] and the cards face down on the table
[unsorted array].

ii. Then remove one card [key] at a time from
the table [unsorted array], and insert it into
the correct position in the left hand [sorted
array].

iii. To find the correct position for the card, we
compare it with each of the cards already in
the hand, from right to left.

Note that at all times, the cards held in the left
hand are sorted, and these cards were originally
the top cards of the pile on the table.

Complexity Analysis of Insertion Sort

Insertion sort's overall complexity is O(n

2
) on

average, regardless of the method of insertion.
On the almost sorted arrays insertion sort shows
better performance, up to O(n) in case of applying
insertion sort to a sorted array. Number of writes
is O(n

2
) on average, but number of comparisons

may vary depending on the insertion algorithm. It
is O(n

2
) when shifting or swapping methods are

used and O(n log n) for binary insertion sort.

Figure 1: Insertion Sort Analysis Diagram [17].

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –131–
http://www.akamaiuniversity.us/PJST.htm Volume 18. Number 1. May 2017 (Spring)

From the point of view of practical application, an
average complexity of the insertion sort is not so
important. As it was mentioned above, insertion
sort is applied to quite small data sets (from 8 to
12 elements). Therefore, first of all, a "practical
performance" should be considered. In practice
insertion sort outperforms most of the quadratic
sorting algorithms, like selection sort or bubble
sort [17].

RESEARCH METHODOLOGY

Approach

The considered sorting algorithms were
implemented in MATLAB. For the purpose of
scheduling, analysis, and reporting, Halstead
metrics were used. The Halstead metrics are
simply used to measure and interpret tokens.
Tokens can be described as the smallest units of
a text which is recognized by a compiler.

Keywords

The following are regarded as Halstead keyword:

break

case

continue

default

do

else

for

goto

if

return

sizeof

switch

while

etc.

Table 1: Halstead Operators.

In this study, the following tokens are considered
Halstead operands:

i. identifiers,
ii. typedef name types,

iii. numerical constants, and
iv. strings.

A label and its terminating colon do not count, as
they are comments according to Halstead. In
addition, function headings, including the
initializations included in them, do not count.

Halstead Parameters

The basic Halstead parameters used in this study
are:

i. Unique operators (c1): the number of unique
occurrences of Halstead operators in the
program,

ii. Unique operands (c2): the number of unique
occurrences of Halstead operands in the
program,

iii. Total operators (C1): the total number of
Halstead operators,

iv. Total operands (C2): the total number of
Halstead operands.

Halstead Operators

(
[
.
-
>

++
--

Sizeof
&&
%
!=
=
||

==
<

+=
*=

http://www.akamaiuniversity.us/PJST.htm
http://www.algolist.net/Algorithms/Sorting/Selection_sort
http://www.algolist.net/Algorithms/Sorting/Bubble_sort
http://www.algolist.net/Algorithms/Sorting/Bubble_sort

The Pacific Journal of Science and Technology –132–
http://www.akamaiuniversity.us/PJST.htm Volume 18. Number 1. May 2017 (Spring)

v. Halstead program length: the total number of
operator occurrences and the total number of
operand occurrences.

C = C1 + C2 (1)

vi. Halstead vocabulary: the total number of
unique operator and unique operand
occurrences.

c =c1+c2 (2)

vii. Program volume: proportional to program
size, represents the size, in bits, of space
necessary for storing the program. This
parameter is dependent on specific algorithm
implementation. The parameters V, N, and
the number of lines in the code are shown to
be linearly connected and equally valid for
measuring relative program size.

Pvol=C*log2(c) (3)

viii. Programming time: shows time (in minutes)
needed to translate the existing algorithm into
implementation in the specified program
language.

T = E / (f * S) (4)

The concept of the processing rate of the human
brain, developed by the psychologist John
Stroud, is also used. Stoud defined a moment as
the time required by the human brain requires to
carry out the most elementary decision. The
Stoud number S is therefore Stoud's moments
per second with: 5 <= S <= 20. Halstead uses 18.

Stroud number S = 18 moments / second

seconds-to-minutes factor f = 60

RESULT AND DISCUSSION

In this study, two sorting algorithms were
considered and implemented in MATLAB. Tables
2 and 3 describe the parameters used for the
simulation. The bubble sort parameters in Table 2
were implemented in MATLAB and the analysis
results are presented in Figure 2. Also, the
insertion sort parameters in Table 3 were
implemented in MATLAB and the analysis results
are presented in Figure 3. Figure 4 presents the
overall results for both the bubble sort and the
insertion sort algorithms for comparison
purposes.

Table 2: Bubble Sort Implementation Parameter.
s

Metrics Value

c1 13

c2 7

C1 21

C2 30

LOC 27

Pvoc 17

P 43

Cd 21.70

PVol 41.23

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –133–
http://www.akamaiuniversity.us/PJST.htm Volume 18. Number 1. May 2017 (Spring)

c1 c2 C1 C2 LOC Pvoc P Cd Pvol

5

10

15

20

25

30

35

40

45

Parameters

 Bubble Sort

Figure 2: Bubble Sort Algorithm Analysis.

Table 3: Selection Sort Implementation Parameters

Metrics Value

c1 14

c2 12

C1 18

C2 32

LOC 24

Pvoc 18

P 46

Cd 44

PVol 44.06

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –134–
http://www.akamaiuniversity.us/PJST.htm Volume 18. Number 1. May 2017 (Spring)

c1 c2 C1 C2 LOC Pvoc P Cd Pvol

10

15

20

25

30

35

40

45

50

Parameters

 Insertion Sort

Figure 3: Insertion Sort Algorithm Analysis.

c1 c2 C1 C2 LOC Pvoc P Cd Pvol

5

10

15

20

25

30

35

40

45

50

 Bubble Sort

 Insertion Sort

Parameters

Figure 3: Bubble Sort and Insertion Sort Algorithms Analysis.

In this study, the selected Halstead based
algorithms were implemented and analyzed using
c1, c2, C1, C2, LOC, Pvoc, P, Cd, and Pvol.

Figure 3 shows that the bubble sort algorithm is
19.8% efficient compared to the insertion sort
algorithm which is 16% efficient using LOC, the
bubble sort algorithm is 5% efficient while the
insertion sort algorithms are 7% efficient using c1,
the bubble sort and insertion sort algorithms are
both efficient using c2, the bubble sort has an

efficiency of 13% compared to the insertion
algorithm with 10% efficiency using C1, the
insertion sort algorithm is 24% efficient compared
to the bubble sort algorithm which is 22% efficient
using C2, the insertion sort algorithm is 38%
efficient compared to the bubble sort algorithm
which is 35% efficient based on Pvol, the bubble
sort algorithm is 8% efficient compared to the
insertion sort algorithm which is 10% efficient
based on Pvoc, the insertion sort algorithm
showed a better indication which is 36% efficient

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –135–
http://www.akamaiuniversity.us/PJST.htm Volume 18. Number 1. May 2017 (Spring)

compared to the bubble sort algorithm which is
12.5% efficient based on Cd.

CONCLUSION

In this study, two important sorting algorithms
have been implemented in MATLAB and
compared. The efficiency of each of the
algorithms using Halstead parameters in handling
various sorting tasks have also been discussed.

REFERENCES

1. Ammar, H.H., T. Nikzadeh, and J. Dugan. 1997. “A

Methodology for Risk Assessment of Functional
Specification of Software Systems Using Colored
Petri Nets". Proc. Of the Fourth International
Software Metrics Symposium, Metrics'97,

Albuquerque, NM. Nov 5-7, 1997.108-117.

2. Basci, D. and S. Misra. 2009. “Measuring and
Evaluating a Design Complexity Metric for
XML Schema Documents’ Code”. Journal of
Information Science and Engineering.1415-1425.

3. Banker, S., M. Datar and D. Zweig. 1989.
“Software Complexity and Maintainability”. In:
Proceedings of the Tenth International Conference
on Information Systems. Dec. 4-6, Boston, MA.
247-255.

4. Beizer B. 1984. Software System Testing and
Quality Assurance. Van Nostrand Reinhold: New
York, NY.

5. Cafer, F. 2010. “Estimating Complexity of a
Software Code”.

6. Chidamber, S.R. and C.F. Kemerer. 1994. “A
Metric Suite for Object Oriented Design”. IEEE
Transactions Software Engineering, SE-6:476-493.

7. Fenton, N.E. 1992. Software Metrics – A Rigorous
Approach. Chapman & Hall: London, UK.

8. Fenton, N.E. and S.L. Pfleeger. 1997. Software
Metrics: A Rigorous and Practical Approach, 2nd
Edition Revised. PWS Publishing: Boston, MA.

9. Galin, D. 2004. Software Quality Assurance.
Pearson Addison Wesley: London, UK.

10. Gill, G.K. and C.F. Kemerer. 1991. “Cyclomatic
Complexity Density and Software Maintenance”.
IEEE Trans. Software Engineering. 17:1284-1288.

11. Halstead, M.H. 1997. Elements of Software

Science. Elsevier North-Holland: New York, NY.

12. Hughes, B. 2006. Software Project Management,
4th Edition. McGraw-Hill: New York, NY.

13. Jones, C. 1986. Programming Productivity.
McGraw Hill: New York, NY.

14. McCabe, T.J. and A.H. Watson. 1994. Software
Complexity. McCabe and Associates, Inc. (last
accessed 17.03.2010). Available at:
http://www.stsc.hill.af.mil/crosstalk/1994/12/xt94d12b.asp

15. McCall, J.A., P.K. Richards, and G.F. Walters.
1977. Factory in Software Quality, Volume I-III, US
Rome Air Development Center Reports NTIS
AD/A-049 014. 015, 055. National Technical
Information Service, US Department of
Commerce: Washington, D.C..

16. McCabe. T. 1976. “A Complexity Measure”. IEEE
Transactions of Software Engineering. SE-1:312-

327.

17. Misra, S. and I. Akman. 2008. “A Complexity
Metric Based on Cognitive Informatics”. Lecture
Notes in Computer Science. 5009:620-627.

18. Miller, D.R. and O.C. James. 2001. “Multi-
Paradigm Design for C++’ Book review and
Commentary”. (last accessed 22.03.2010)
Available at: http://www.inkdrop.net/docs/multiParadigm.pd

19. Ramamoorthy, C.V., W.T. Ramamoorthy, T. Tsai,
T. Yamura, and A. Bhide. 1985. “Metrics Guided
Methodology”. COMPSAC 85. 111-120.

20. Tourlakis G.J. 1984. Computability. Reston, VA.

SUGGESTED CITATION

Awode, T.R., D.D. Olatinwo, O. Shoewu, S.O.
Olatinwo, O.O. Omitola, and M. Adedoyin. 2017.
“Halstead Complexity Analysis of Bubble and
Insertion Sorting Algorithms”. Pacific Journal of
Science and Technology. 18(1):125-135.

Pacific Journal of Science and Technology

http://www.akamaiuniversity.us/PJST.htm
http://www.akamaiuniversity.us/PJST.htm

