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ABSTRACT 
 
A study on the descriptional complexity of simple 
semi-conditional grammars is presented. It is 
proved that every recursively enumerable 
language can be generated by a simple semi-
conditional grammar of degree (2, 1) with no more 
than six conditional productions and seven non-
terminals. 
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INTRODUCTION 
 
Descriptional complexity aspects of systems 
(automata, grammars, rewriting systems, etc.) 
have been a subject of intensive research since 
the beginning of computer science, but the field 
has also been actively studied in recent years. 
Examples of some early results appeared in [4] 
about the size of context-free grammars, and the 
size measures of the number of nonterminal 
symbols and the number of productions were also 
introduced, see also [6] for a survey of 
”grammatical complexity” of context-free 
grammars. The succinctness of representations of 
languages by different variants of automata were 
also considered by several authors, see [3] and 
[5] for more details, and a survey of results in 
these areas. 
 
It is obvious that the fact that a system is able to 
simulate some universal device implies that its 
size parameters can be bounded. This holds, 
since by simulating the universal device, all 
computations are carried out by a fixed (universal) 
system (having, therefore, fixed size parameters). 
On the other hand, it is still interesting to look for 
the best possible values of the bounds, or to study 
the relationship of certain size parameters with 

each other or with other properties of the given 
system.  
 
Simple semi-conditional grammars represent a 
straightforward simplification of semi-conditional 
grammars, in which each rule has at most one 
nonempty condition, that is, no controlling context 
condition at all, or either a permitting, or a 
forbidding context. Semi-conditional grammars 
are context-free grammars, in which both a 
permitting context and a forbidding context are 
associated with each production rule. 
 
 
PRELIMINARIES AND DEFINITIONS 
 
This paper assumes that the reader is familiar 
with the language theory (see [7, 8]). 

Let V be an alphabet. V denotes the free monoid 
generated by V under the operation of 

concatenation where ε denotes the unit of V
*
. Let 

V
+
 = V – { ε }. Given a word, w ∈ V, |w| 

represents the length of w. We set sub(w ) = {y : 

y is a subword of w}. Given a symbol, a ∈ V, #aw 
denotes the number of occurrences of a in w. For 

w ∈ V
+
, first (w) denotes the leftmost symbol of w.  

       
A semi-conditional grammar (as n sc-grammar 
for short) is a quadruple, G = (V, T, P, S), where 
V, T and S are the total alphabet, the terminal 

alphabet (T ⊂ V), and the axiom (S ∈ V–T), 
respectively, and P is a finite set of productions of 
the form (A → x, α, β) with A ∈ V–T, x ∈ V∗, α ∈ 

V
+
 ∪ {0} and β ∈ V

+
 ∪ {0}, where 0 is a special 

symbol, 0  V (intuitively, 0 means that the 
production’s condition is missing).  
 
Production (A → x, α, β) ∈ P is said to be 

conditional, if α ≠ 0 or β ≠ 0. G has degree (i, j), 
where i and j are two natural numbers, if for every 

(A → x, α, β) ∈ P, α ∈ V
+
 implies |α| ≤ i, and β ∈ 

V
+
 implies |β| ≤ j. Let u, v ∈ V∗, and (A → x, α, β) 
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∈ P. Then, u directly derives v according to (A → 

x, α, β) in G, denoted by: 
 
u ⇒G v [(A → x, α, β)] 

 

provided for some u1, u2 ∈ V∗, the following 
conditions (a) through (d) hold: 
 
(a) u = u1Au2, 
(b) v = u1xu2, 

(c) α ≠ 0 implies α ∈ sub(u) 

(d) β ≠ 0 implies β  sub(u) 
 
When no confusion exists, we simply write u ⇒G v. 

As usual, we extend ⇒G to ⇒
i
G (where i ≥ 0), and 

⇒∗
G. The language of G, denoted by L(G), is 

defined as L(G) = w ∈ T∗ : S ⇒∗
G w. 

 
Based upon the concept of sc-grammars, Meduna 
and Gopalaratnam [2] have defined as a simple 
semi-conditional grammar (an ssc-grammar for 
short) as an sc-grammar in which every 
production has no more than one condition. 
Formally, let G = (V, T, P, S) be an sc-grammar. G 
is a simple semi-conditional grammar if (A → x, α, 

β) ∈ P implies {0} ⊆ {α, β} 
 
 
MAIN RESULTS 
 
Theorem 1. Every recursively enumerable 
language is generated by a simple semi-
conditional grammar of degree (2, 1) with no more 
than 6 conditional productions and 7 non-
terminals. 
 
Proof. Let L be a recursively enumerable 
language. From [1], we can assume that L is 
generated by a grammar G of the form 
         

G = (V, T, P ∪ {AA → ε, BBB → ε}, S) 

 
such that P contains only context-free productions 
and 
 
V - T = {S, A, B} 
 
We construct an simple semi-conditional grammar 
G' of degree (2, 1) as follows: 
 
G' = (V', T, P', S),  
 
where 
 
V' = V U W 

 

W = {A', B', $, #}, V ∩ W = ∅ 
 
The set of productions P is defined in the 
following way: 
 
1. If H → α ∈ P, H ∈ V - T, α ∈ V∗ , then add (H → 

α,0,0) to P'; 
 
 
2. Add the following three productions to P': 
 
(A → A', 0, A') 
  
(A' → $, 0, $)  
 
($→ ε, 0, A')  
 
3. Add the following three productions to P': 
 
(B → #B', 0, B')  

 
(B' → ε, 0, #)  

 
(#→ ε, #B', 0) 

 
Next we prove that L (G') = L (G). 
 
Basic Idea: Note that G' is of degree (2, 1) and 
has only 6 conditional productions. The 
productions of (2) simulate the application of AA 

→ ε in G' and the productions of (3) simulate the 

application of BBB → ε in G'. 

 

The simulation of AA → ε is described as follows: 

the first occurrence of A is rewritten as A', then A' 
is rewritten as $.  
 
Finally $ is erased. The second occurrence of A 

is erased in a similar version. BBB → ε is 

simulated in a similar way using production (4) 
(6) (5) (4) (6) (5) (4) (6) (5).       
 
To establish L(G) = L(G') formally, we first prove 
the following claim. 
 

Claim 1. S ⇒
*
G' x' implies # x x' ≤ 1 for each x  ∈ 

{A', B'}, where x' ∈ (V')
*
. 

 
Proof. By inspection of productions in P', the only 

productions that can generate x  are of the form 

(x → x , 0, x ) or (x → # x , 0, x ). These 
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productions can be applied only when no x  

occurs in the rewritten sentential form. Thus, it is 

impossible to derive x' from S such that # x x' ≥ 2.    

 

Let g be a finite substitution from (V') to V 
defined as follows: 
 

1. for all X  V:  g(X) = {X}; 
2. g(A') = {A}, g($) = {A, AA}; 
3. g(B') = {ε, B, BBB}, g(#) = {B, BBB}. 
 

Claim 2. S ⇒
G x if and only if S ⇒

G' x' for some x 

 g(x'), x  V, x'  (V'). 
 
Proof. This claim is proved by induction on the 
length of derivations. Only if, we prove that 
       

S ⇒
m

G x implies S ⇒
G' x, 

 

where m ≥ 0, x  V. This is established by 
induction on m. 
 
Basis: Let m = 0. That is S ⇒

0
G S. Clearly, S ⇒

0
G' 

S. 
 
Induction Hypothesis: Suppose that the claim 
holds for all derivations of length m or less for 
some m ≥ 0. 
 
Induction Step: Let us consider a derivation S 

⇒G
m+1

 x, x  V. Since m + 1 ≥ 1, there is some y 

 V
+
 and p  P  {AA → , BBB → } such that S 

⇒
m

G y ⇒G x [p]. By the induction hypothesis there 

is a derivation S ⇒
G' y. 

There are three cases that cover all possible 
forms of the production p: 
 

(i) p = H → y2  P, H  V - T, y2  V.  
Then y = y1Hy3 and x = y1y2y3, 

y1, y3  V. Because we have (H → y2, 0, 0)  P, 

S ⇒
G' y1Hy3 ⇒G' y1y2y3 [(H → y2, 0, 0)] and y1y2y3 

= x.  
 

(ii) p = AA → . Then y = y1AAy3 and x = y1y3, y1, 

y3  V. In this case there is the following 
derivation which use the production: 
 

            S ⇒
G'   y1AAy3 

                      1
⇒

G'   y1A'Ay3 [(A → A', 0, A')] 
                      2

⇒
G'   y1$Ay3 [(A' → $, 0, $)] 

                      3
⇒

G'   y1Ay3 [($→ , 0, A')] 
                      1

⇒
G'   y1A'y3 [(A → A', 0, A')] 

                      2
⇒

G'   y1$y3 [(A' → $, 0, $)] 

                      3
⇒

G'   y1y3 [($→ , 0, A')] 
 

(iii) p = BBB → . Then y = y1BBBy3 and x = y1y3, 

y1, y3  V. In this case there exist the derivation: 
 

             S ⇒
G  ' y1BBBy3 

               
4
⇒

G'   y1BB#B'y3 [(B → #B', 0, B')] 

               
6
⇒

G'   y1BBB'y3 [(#B' → ε, 0, $)] 

               
5
⇒

G'   y1BBy3 [(B' → ε, 0, #)] 

               
4
⇒

G'   y1B#B'y3 [(B → #B', 0, B')] 

               
6
⇒

G'   y1BB'y3 [(#B' → ε, 0, $)] 

               
5
⇒

G'   y1By3 [(B' → ε, 0, #)] 

               
4
⇒

 G'   y1#B'y3 [(B → #B', 0, B')] 

               
6
⇒

G'   y1B'y3 [(#B' → ε, 0, $)] 

               
5
⇒

G'   y1y3 [( B' → , 0, #)] 
 
If : By induction on n ≥ 0, we prove that 
 

S ⇒
n
G' x' implies S ⇒

G x 
 

for some x  g(x'), x  V, x'  (V'). 
 
Basis: Let n = 0. That is, S ⇒

0
G' S. It is obvious 

that S ⇒
0

G S and S  g(S). 
 
Induction Hypothesis: Assume that the claim 
holds for all derivations of length n or less, for 
some n ≥ 0. 
 
Induction Step: Consider a derivation S ⇒G'

n+1
 x', 

x'  (V'). Since n + 1 ≥ 1, there is some y'  (V')
+
 

and p'  P' such that S ⇒
n
G' y' ⇒G' x' [p'] and by 

the induction hypothesis there is also a derivation 

S ⇒
G y such that y  g(y'). 

By inspection of P' the following cases (i) through 
(xvi) cover all possible forms of p': 
 

(i) p' = (H → y2, 0, 0)  P', H  V - T, y2  V. 

Then y' = y'1Hy'3, x' = y'1y2y'3, y'1, y'3  (V') and y 

has the form y = y1Zy3, where y1  g(y'1), y3  

g(y'3) and Z  g(H ). Because for all X  V - T 
such that g(X) = X, the only Z is H and thus y = 
y1Hy3. By the definition of P' (see (1)) there exists 
a production p = H → y2 in P and we can 

construct the derivation S ⇒
G y1Hy3 ⇒G y1y2y3 [p] 

such that y1y2y3 = x, x  g(x'). 
 
(ii) p' = (A → A', 0, A'). Then y' = y'1Ay'3, x' = 

y'1A'y'3, y'1, y'3  (V') and y = y1Zy3, where y1  

g(y'1), y3  g(y'3) and Z  g(A). Because g(A) = 
{A} the only Z is A, so we can express y = y1Ay3. 

Having the derivation S ⇒
G y such that y  g(y'), 

it is easy to see that also y  g(x') because A  
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g(A') 
 
(iii) p' = (A' → $, 0, $). Then y' = y'1A'y'3, x' = 

y'1$y'3, y'1, y'3  (V') and y = y1Zy3, where y1  

g(y'1), y3  g(y'3) and Z  g(A'). Because g(A') = 
{A} the only Z is A, so we can express y = y1Ay3. 

Having the derivation S ⇒
G y such that y  g(y'), 

it is easy to see that also y  g(x') because A  
g($) 
 

(iv) p' = ($→ , 0, A'). Then, y' = y'1$y'3 and x' = 

y'1y'3, where y'1, y'3  (V'). Express y = y1Zy3 so 

that y1  g(y'1), y3  g(y'3) and Z  g($), where 
g($) = {A, AA}. Let Z = AA. Then, y = y1AAy3 and 

there exists the derivation S ⇒
G y1AAy3 ⇒G y1y3 

[AA → ], where y1y3 = x, x  g(x'). 
 
(v) p' = (A → A', 0, A'). Then y' = y'1Ay'3, x' = 

y'1A'y'3, y'1, y'3  (V') and y = y1Zy3, where y1  

g(y'1), y3  g(y'3) and Z  g(A). Because g(A) = {A} 
the only Z is A, so we can express y = y1Ay3. 

Having the derivation S ⇒
G y such that y  g(y'), 

it is easy to see that also y  g(x') because A  
g(A') 
 
(vi) p' = (A' → $, 0, $). Then y' = y'1A'y'3, x' = 

y'1$y'3, y'1, y'3  (V') and y = y1Zy3, where y1  

g(y'1), y3  g(y'3) and Z  g(A'). Because g(A') = 
{A} the only Z is A, so we can express y = y1Ay3. 

Having the derivation S ⇒
G y such that y  g(y'), 

it is easy to see that also y  g(x') because A  
g($) 
 

(vii) p' = ($→ , 0, A'). Then, y' = y'1$y'3 and x' = 

y'1y'3, where y'1, y'3  (V'). Express y = y1Zy3 so 

that y1  g(y'1), y3  g(y'3) and Z  g($), where 
g($) = {A, AA}. Let Z = AA. Then, y = y1AAy3 and 

there exists the derivation S ⇒
G y1AAy3 ⇒G y1y3 

[AA → ], where y1y3 = x, x  g(x'). 
 
(viii) p' = (B → #B', 0, B'). Then, y' = y'1By'3, x' = 

y'1#B'y'3, y'1, y'3  (V') and y = y1Zy3, where y1  

g(y'1), y3  g(y'3) and Z  g(B). Because g(B) = {B} 
the only Z is B, so we can express y = y1By3. 

Having the derivation S ⇒
G y such that y  g(y'), 

it is easy to see that also y  g(x') because B  
g(#B') 
 

(ix) p' = (#→ , #B', 0). By the permitting condition 
of this production string #B' surely occurs in y'. By 
Claim 1, no more than one B' can occur in y'. 
Therefore, y' must be of form y’ = y1'#B'y3', where 

y1', y3'  (V') and B'  sub(y1'y3'). Then x' = y1'#y3' 

and y is of the form y = y1Zy3, where y1  g(y1'), y3 

 g(y3') and Z  g(#). Because g(#) = {B, BBB}, 
the only Z is BBB; thus, we obtain y = y1BBBy3. 
By the induction hypothesis, we have a derivation 

S ⇒G y such that y  g(y'). According to definition 

of g, y  g(x') as well because BBB  g(#). 
 

(x) p' = (B' → , 0, #). Then, y' = y'1B'y'3 and x' = 

y'1y'3, where y'1, y'3  (V'). Express y = y1Zy3 so 

that y1  g(y'1), y3  g(y'3) and Z  g(B'). Let Z = 
BBB. Then, y = y1BBBy3 and there exists the 

derivation    S ⇒
G y1BBBy3 ⇒G y1y3 [BBB → ], 

where y1y3 = x, x  g(x'). 
 
(xi) p' = (B → #B', 0, B'). Then, y' = y'1By'3, x' = 

y'1#B'y'3, y'1, y'3  (V') and y = y1Zy3, where y1  

g(y'1), y3  g(y'3) and Z  g(B). Because g(B) = 
{B} the only Z is B, so we can express y = y1By3. 

Having the derivation S ⇒
G y such that y  g(y'), 

it is easy to see that also y  g(x') because B  
g(#B') 
 

(xii) p' = (#→ , #B', 0). By the permitting 
condition of this production string #B' surely 
occurs in y'. By Claim 1, no more than one B' can 
occur in y'. Therefore, y' must be of form y' = 

y1'#B'y3', where y1', y3'  (V') and B'  sub(y1'y3'). 
Then x' = y1'#y3' and y is of the form y = y1Zy3, 

where y1  g(y1' ), y3  g(y3') and Z  g(#). 
Because g(#) = {B, BBB}, the only Z is BBB; thus, 
we obtain y = y1BBBy3. By the induction 
hypothesis, we have a derivation S ⇒G y such 

that y  g(y'). According to definition of g, y  

g(x') as well because BBB  g(#). 
 

(xiii) p' = (#→ , #B', 0). By the permitting 
condition of this production string #B' surely 
occurs in y'. By Claim 1, no more than one B' can 
occur in y'.  Therefore, y' must be of form y' = y1' 

#B'y3', where y1', y3'  (V') and B'  sub(y1'y3'). 
Then x' = y1'#y3' and y is of the form y = y1Zy3, 

where y1  g(y1'), y3  g(y3') and Z  g(#). 
Because g(#) = {B, BBB}, the only Z is BBB; thus, 
we obtain y = y1BBBy3. By the induction 

hypothesis, we have a derivation S ⇒
G y such 

that y  g(y'). According to definition of g, y  

g(x') as well because BBB  g(#). 
 
(xiv) p' = (B → #B', 0, B'). Then, y' = y'1By'3, x' = 

y'1#B'y'3, y'1, y'3  (V') and y = y1Zy3, where y1  

g(y'1), y3  g(y'3) and Z  g(B). Because g(B) = 
{B} the only Z is B, so we can express y = y1By3. 

Having the derivation S ⇒
G y such that y  g(y'), 

it is easy to see that also y  g(x') because B  
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g(#B') 
 

(xv) p' = (#→ , #B', 0). By the permitting condition 
of this production string #B' surely occurs in y'. By 
Claim 1, no more than one B' can occur in y'. 
Therefore, y' must be of form y' = y'1#B'y'3, where 

y'1, y'3  (V') and B'  sub(y'1y'3). Then x' = y'1#y'3 

and y is of the form y = y1Zy3, where y1  g(y'1), y3 

 g(y'3) and Z  g(#). Because g(#) = {B, BBB}, 
the only Z is BBB; thus, we obtain y = y1BBBy3. By 
the induction hypothesis, we have a derivation S 

⇒
G y such that y  g(y'). According to definition of 

g, y  g(x') as well because BBB  g(#). 
 

(xvi) p' = (B' → , 0, #). Then, y' = y'1B'y'3 and x' = 

y'1y'3, where y'1, y'3  (V'). Express y = y1Zy3 so 

that y1  g(y'1), y3  g(y'3) and Z  g(B'). Let Z = 
BBB. Then, y = y1BBBy3 and there exists the 

derivation S ⇒
G y1BBBy3 ⇒G y1y3 [BBB → ], 

where y1y3 = x, x  g(x'). 
 
We have completed the proof and established 
Claim 2 by the principle of induction.  Observe 
that L(G) = L(G') follows from Claim 2. Indeed, 
according to the definition of g we have g(a) = {a} 

for all a  T. Thus, from Claim 2, we have for any 

x  T: 
 

S ⇒
G x if and only if S ⇒

G' x. 
 
Consequently, L(G) = L(G') and the theorem 
holds. 
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