
The Pacific Journal of Science and Technology –112–
http://www.akamaiuniversity.us/PJST.htm Volume 18. Number 1. May 2017 (Spring)

Reduction of Simple Semi-Conditional Grammars.

R.O. Oladele, Ph.D. and S.N. Isah, M.Sc.

Department of Computer Science, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria.

E-mail: roladele@unilorin.edu.ng
14-52he017pg@students.unilorin.edu.ng

ABSTRACT

A study on the descriptional complexity of simple
semi-conditional grammars is presented. It is
proved that every recursively enumerable
language can be generated by a simple semi-
conditional grammar of degree (2, 1) with no more
than six conditional productions and seven non-
terminals.

(Keywords: descriptional complexity, simple semi-
conditional grammar, formal languages)

INTRODUCTION

Descriptional complexity aspects of systems
(automata, grammars, rewriting systems, etc.)
have been a subject of intensive research since
the beginning of computer science, but the field
has also been actively studied in recent years.
Examples of some early results appeared in [4]
about the size of context-free grammars, and the
size measures of the number of nonterminal
symbols and the number of productions were also
introduced, see also [6] for a survey of
”grammatical complexity” of context-free
grammars. The succinctness of representations of
languages by different variants of automata were
also considered by several authors, see [3] and
[5] for more details, and a survey of results in
these areas.

It is obvious that the fact that a system is able to
simulate some universal device implies that its
size parameters can be bounded. This holds,
since by simulating the universal device, all
computations are carried out by a fixed (universal)
system (having, therefore, fixed size parameters).
On the other hand, it is still interesting to look for
the best possible values of the bounds, or to study
the relationship of certain size parameters with

each other or with other properties of the given
system.

Simple semi-conditional grammars represent a
straightforward simplification of semi-conditional
grammars, in which each rule has at most one
nonempty condition, that is, no controlling context
condition at all, or either a permitting, or a
forbidding context. Semi-conditional grammars
are context-free grammars, in which both a
permitting context and a forbidding context are
associated with each production rule.

PRELIMINARIES AND DEFINITIONS

This paper assumes that the reader is familiar
with the language theory (see [7, 8]).

Let V be an alphabet. V denotes the free monoid
generated by V under the operation of

concatenation where ε denotes the unit of V
*
. Let

V
+
 = V – { ε }. Given a word, w ∈ V, |w|

represents the length of w. We set sub(w) = {y :

y is a subword of w}. Given a symbol, a ∈ V, #aw
denotes the number of occurrences of a in w. For

w ∈ V
+
, first (w) denotes the leftmost symbol of w.

A semi-conditional grammar (as n sc-grammar
for short) is a quadruple, G = (V, T, P, S), where
V, T and S are the total alphabet, the terminal

alphabet (T ⊂ V), and the axiom (S ∈ V–T),
respectively, and P is a finite set of productions of
the form (A → x, α, β) with A ∈ V–T, x ∈ V∗, α ∈

V
+
 ∪ {0} and β ∈ V

+
 ∪ {0}, where 0 is a special

symbol, 0  V (intuitively, 0 means that the
production’s condition is missing).

Production (A → x, α, β) ∈ P is said to be

conditional, if α ≠ 0 or β ≠ 0. G has degree (i, j),
where i and j are two natural numbers, if for every

(A → x, α, β) ∈ P, α ∈ V
+
 implies |α| ≤ i, and β ∈

V
+
 implies |β| ≤ j. Let u, v ∈ V∗, and (A → x, α, β)

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –113–
http://www.akamaiuniversity.us/PJST.htm Volume 18. Number 1. May 2017 (Spring)

∈ P. Then, u directly derives v according to (A →

x, α, β) in G, denoted by:

u ⇒G v [(A → x, α, β)]

provided for some u1, u2 ∈ V∗, the following
conditions (a) through (d) hold:

(a) u = u1Au2,
(b) v = u1xu2,

(c) α ≠ 0 implies α ∈ sub(u)

(d) β ≠ 0 implies β  sub(u)

When no confusion exists, we simply write u ⇒G v.

As usual, we extend ⇒G to ⇒
i
G (where i ≥ 0), and

⇒∗
G. The language of G, denoted by L(G), is

defined as L(G) = w ∈ T∗ : S ⇒∗
G w.

Based upon the concept of sc-grammars, Meduna
and Gopalaratnam [2] have defined as a simple
semi-conditional grammar (an ssc-grammar for
short) as an sc-grammar in which every
production has no more than one condition.
Formally, let G = (V, T, P, S) be an sc-grammar. G
is a simple semi-conditional grammar if (A → x, α,

β) ∈ P implies {0} ⊆ {α, β}

MAIN RESULTS

Theorem 1. Every recursively enumerable
language is generated by a simple semi-
conditional grammar of degree (2, 1) with no more
than 6 conditional productions and 7 non-
terminals.

Proof. Let L be a recursively enumerable
language. From [1], we can assume that L is
generated by a grammar G of the form

G = (V, T, P ∪ {AA → ε, BBB → ε}, S)

such that P contains only context-free productions
and

V - T = {S, A, B}

We construct an simple semi-conditional grammar
G' of degree (2, 1) as follows:

G' = (V', T, P', S),

where

V' = V U W

W = {A', B', $, #}, V ∩ W = ∅

The set of productions P is defined in the
following way:

1. If H → α ∈ P, H ∈ V - T, α ∈ V∗ , then add (H →

α,0,0) to P';

2. Add the following three productions to P':

(A → A', 0, A')

(A' → $, 0, $)

($→ ε, 0, A')

3. Add the following three productions to P':

(B → #B', 0, B')

(B' → ε, 0, #)

(#→ ε, #B', 0)

Next we prove that L (G') = L (G).

Basic Idea: Note that G' is of degree (2, 1) and
has only 6 conditional productions. The
productions of (2) simulate the application of AA

→ ε in G' and the productions of (3) simulate the

application of BBB → ε in G'.

The simulation of AA → ε is described as follows:

the first occurrence of A is rewritten as A', then A'
is rewritten as $.

Finally $ is erased. The second occurrence of A

is erased in a similar version. BBB → ε is

simulated in a similar way using production (4)
(6) (5) (4) (6) (5) (4) (6) (5).

To establish L(G) = L(G') formally, we first prove
the following claim.

Claim 1. S ⇒
*
G' x' implies # x x' ≤ 1 for each x ∈

{A', B'}, where x' ∈ (V')
*
.

Proof. By inspection of productions in P', the only

productions that can generate x are of the form

(x → x , 0, x) or (x → # x , 0, x). These

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –114–
http://www.akamaiuniversity.us/PJST.htm Volume 18. Number 1. May 2017 (Spring)

productions can be applied only when no x

occurs in the rewritten sentential form. Thus, it is

impossible to derive x' from S such that # x x' ≥ 2.

Let g be a finite substitution from (V') to V
defined as follows:

1. for all X  V: g(X) = {X};
2. g(A') = {A}, g($) = {A, AA};
3. g(B') = {ε, B, BBB}, g(#) = {B, BBB}.

Claim 2. S ⇒
G x if and only if S ⇒

G' x' for some x

 g(x'), x  V, x'  (V').

Proof. This claim is proved by induction on the
length of derivations. Only if, we prove that

S ⇒
m

G x implies S ⇒
G' x,

where m ≥ 0, x  V. This is established by
induction on m.

Basis: Let m = 0. That is S ⇒

0
G S. Clearly, S ⇒

0
G'

S.

Induction Hypothesis: Suppose that the claim
holds for all derivations of length m or less for
some m ≥ 0.

Induction Step: Let us consider a derivation S

⇒G
m+1

 x, x  V. Since m + 1 ≥ 1, there is some y

 V
+
 and p  P  {AA → , BBB → } such that S

⇒
m

G y ⇒G x [p]. By the induction hypothesis there

is a derivation S ⇒
G' y.

There are three cases that cover all possible
forms of the production p:

(i) p = H → y2  P, H  V - T, y2  V.
Then y = y1Hy3 and x = y1y2y3,

y1, y3  V. Because we have (H → y2, 0, 0)  P,

S ⇒
G' y1Hy3 ⇒G' y1y2y3 [(H → y2, 0, 0)] and y1y2y3

= x.

(ii) p = AA → . Then y = y1AAy3 and x = y1y3, y1,

y3  V. In this case there is the following
derivation which use the production:

 S ⇒
G' y1AAy3

 1
⇒

G' y1A'Ay3 [(A → A', 0, A')]
 2

⇒
G' y1$Ay3 [(A' → $, 0, $)]

 3
⇒

G' y1Ay3 [($→ , 0, A')]
 1

⇒
G' y1A'y3 [(A → A', 0, A')]

 2
⇒

G' y1$y3 [(A' → $, 0, $)]

 3
⇒

G' y1y3 [($→ , 0, A')]

(iii) p = BBB → . Then y = y1BBBy3 and x = y1y3,

y1, y3  V. In this case there exist the derivation:

 S ⇒
G ' y1BBBy3

4
⇒

G' y1BB#B'y3 [(B → #B', 0, B')]

6
⇒

G' y1BBB'y3 [(#B' → ε, 0, $)]

5
⇒

G' y1BBy3 [(B' → ε, 0, #)]

4
⇒

G' y1B#B'y3 [(B → #B', 0, B')]

6
⇒

G' y1BB'y3 [(#B' → ε, 0, $)]

5
⇒

G' y1By3 [(B' → ε, 0, #)]

4
⇒

 G' y1#B'y3 [(B → #B', 0, B')]

6
⇒

G' y1B'y3 [(#B' → ε, 0, $)]

5
⇒

G' y1y3 [(B' → , 0, #)]

If : By induction on n ≥ 0, we prove that

S ⇒
n
G' x' implies S ⇒

G x

for some x  g(x'), x  V, x'  (V').

Basis: Let n = 0. That is, S ⇒

0
G' S. It is obvious

that S ⇒
0

G S and S  g(S).

Induction Hypothesis: Assume that the claim
holds for all derivations of length n or less, for
some n ≥ 0.

Induction Step: Consider a derivation S ⇒G'

n+1
 x',

x'  (V'). Since n + 1 ≥ 1, there is some y'  (V')
+

and p'  P' such that S ⇒
n
G' y' ⇒G' x' [p'] and by

the induction hypothesis there is also a derivation

S ⇒
G y such that y  g(y').

By inspection of P' the following cases (i) through
(xvi) cover all possible forms of p':

(i) p' = (H → y2, 0, 0)  P', H  V - T, y2  V.

Then y' = y'1Hy'3, x' = y'1y2y'3, y'1, y'3  (V') and y

has the form y = y1Zy3, where y1  g(y'1), y3 

g(y'3) and Z  g(H). Because for all X  V - T
such that g(X) = X, the only Z is H and thus y =
y1Hy3. By the definition of P' (see (1)) there exists
a production p = H → y2 in P and we can

construct the derivation S ⇒
G y1Hy3 ⇒G y1y2y3 [p]

such that y1y2y3 = x, x  g(x').

(ii) p' = (A → A', 0, A'). Then y' = y'1Ay'3, x' =

y'1A'y'3, y'1, y'3  (V') and y = y1Zy3, where y1 

g(y'1), y3  g(y'3) and Z  g(A). Because g(A) =
{A} the only Z is A, so we can express y = y1Ay3.

Having the derivation S ⇒
G y such that y  g(y'),

it is easy to see that also y  g(x') because A 

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –115–
http://www.akamaiuniversity.us/PJST.htm Volume 18. Number 1. May 2017 (Spring)

g(A')

(iii) p' = (A' → $, 0, $). Then y' = y'1A'y'3, x' =

y'1$y'3, y'1, y'3  (V') and y = y1Zy3, where y1 

g(y'1), y3  g(y'3) and Z  g(A'). Because g(A') =
{A} the only Z is A, so we can express y = y1Ay3.

Having the derivation S ⇒
G y such that y  g(y'),

it is easy to see that also y  g(x') because A 
g($)

(iv) p' = ($→ , 0, A'). Then, y' = y'1$y'3 and x' =

y'1y'3, where y'1, y'3  (V'). Express y = y1Zy3 so

that y1  g(y'1), y3  g(y'3) and Z  g($), where
g($) = {A, AA}. Let Z = AA. Then, y = y1AAy3 and

there exists the derivation S ⇒
G y1AAy3 ⇒G y1y3

[AA → ], where y1y3 = x, x  g(x').

(v) p' = (A → A', 0, A'). Then y' = y'1Ay'3, x' =

y'1A'y'3, y'1, y'3  (V') and y = y1Zy3, where y1 

g(y'1), y3  g(y'3) and Z  g(A). Because g(A) = {A}
the only Z is A, so we can express y = y1Ay3.

Having the derivation S ⇒
G y such that y  g(y'),

it is easy to see that also y  g(x') because A 
g(A')

(vi) p' = (A' → $, 0, $). Then y' = y'1A'y'3, x' =

y'1$y'3, y'1, y'3  (V') and y = y1Zy3, where y1 

g(y'1), y3  g(y'3) and Z  g(A'). Because g(A') =
{A} the only Z is A, so we can express y = y1Ay3.

Having the derivation S ⇒
G y such that y  g(y'),

it is easy to see that also y  g(x') because A 
g($)

(vii) p' = ($→ , 0, A'). Then, y' = y'1$y'3 and x' =

y'1y'3, where y'1, y'3  (V'). Express y = y1Zy3 so

that y1  g(y'1), y3  g(y'3) and Z  g($), where
g($) = {A, AA}. Let Z = AA. Then, y = y1AAy3 and

there exists the derivation S ⇒
G y1AAy3 ⇒G y1y3

[AA → ], where y1y3 = x, x  g(x').

(viii) p' = (B → #B', 0, B'). Then, y' = y'1By'3, x' =

y'1#B'y'3, y'1, y'3  (V') and y = y1Zy3, where y1 

g(y'1), y3  g(y'3) and Z  g(B). Because g(B) = {B}
the only Z is B, so we can express y = y1By3.

Having the derivation S ⇒
G y such that y  g(y'),

it is easy to see that also y  g(x') because B 
g(#B')

(ix) p' = (#→ , #B', 0). By the permitting condition
of this production string #B' surely occurs in y'. By
Claim 1, no more than one B' can occur in y'.
Therefore, y' must be of form y’ = y1'#B'y3', where

y1', y3'  (V') and B'  sub(y1'y3'). Then x' = y1'#y3'

and y is of the form y = y1Zy3, where y1  g(y1'), y3

 g(y3') and Z  g(#). Because g(#) = {B, BBB},
the only Z is BBB; thus, we obtain y = y1BBBy3.
By the induction hypothesis, we have a derivation

S ⇒G y such that y  g(y'). According to definition

of g, y  g(x') as well because BBB  g(#).

(x) p' = (B' → , 0, #). Then, y' = y'1B'y'3 and x' =

y'1y'3, where y'1, y'3  (V'). Express y = y1Zy3 so

that y1  g(y'1), y3  g(y'3) and Z  g(B'). Let Z =
BBB. Then, y = y1BBBy3 and there exists the

derivation S ⇒
G y1BBBy3 ⇒G y1y3 [BBB → ],

where y1y3 = x, x  g(x').

(xi) p' = (B → #B', 0, B'). Then, y' = y'1By'3, x' =

y'1#B'y'3, y'1, y'3  (V') and y = y1Zy3, where y1 

g(y'1), y3  g(y'3) and Z  g(B). Because g(B) =
{B} the only Z is B, so we can express y = y1By3.

Having the derivation S ⇒
G y such that y  g(y'),

it is easy to see that also y  g(x') because B 
g(#B')

(xii) p' = (#→ , #B', 0). By the permitting
condition of this production string #B' surely
occurs in y'. By Claim 1, no more than one B' can
occur in y'. Therefore, y' must be of form y' =

y1'#B'y3', where y1', y3'  (V') and B'  sub(y1'y3').
Then x' = y1'#y3' and y is of the form y = y1Zy3,

where y1  g(y1'), y3  g(y3') and Z  g(#).
Because g(#) = {B, BBB}, the only Z is BBB; thus,
we obtain y = y1BBBy3. By the induction
hypothesis, we have a derivation S ⇒G y such

that y  g(y'). According to definition of g, y 

g(x') as well because BBB  g(#).

(xiii) p' = (#→ , #B', 0). By the permitting
condition of this production string #B' surely
occurs in y'. By Claim 1, no more than one B' can
occur in y'. Therefore, y' must be of form y' = y1'

#B'y3', where y1', y3'  (V') and B'  sub(y1'y3').
Then x' = y1'#y3' and y is of the form y = y1Zy3,

where y1  g(y1'), y3  g(y3') and Z  g(#).
Because g(#) = {B, BBB}, the only Z is BBB; thus,
we obtain y = y1BBBy3. By the induction

hypothesis, we have a derivation S ⇒
G y such

that y  g(y'). According to definition of g, y 

g(x') as well because BBB  g(#).

(xiv) p' = (B → #B', 0, B'). Then, y' = y'1By'3, x' =

y'1#B'y'3, y'1, y'3  (V') and y = y1Zy3, where y1 

g(y'1), y3  g(y'3) and Z  g(B). Because g(B) =
{B} the only Z is B, so we can express y = y1By3.

Having the derivation S ⇒
G y such that y  g(y'),

it is easy to see that also y  g(x') because B 

http://www.akamaiuniversity.us/PJST.htm

The Pacific Journal of Science and Technology –116–
http://www.akamaiuniversity.us/PJST.htm Volume 18. Number 1. May 2017 (Spring)

g(#B')

(xv) p' = (#→ , #B', 0). By the permitting condition
of this production string #B' surely occurs in y'. By
Claim 1, no more than one B' can occur in y'.
Therefore, y' must be of form y' = y'1#B'y'3, where

y'1, y'3  (V') and B'  sub(y'1y'3). Then x' = y'1#y'3

and y is of the form y = y1Zy3, where y1  g(y'1), y3

 g(y'3) and Z  g(#). Because g(#) = {B, BBB},
the only Z is BBB; thus, we obtain y = y1BBBy3. By
the induction hypothesis, we have a derivation S

⇒
G y such that y  g(y'). According to definition of

g, y  g(x') as well because BBB  g(#).

(xvi) p' = (B' → , 0, #). Then, y' = y'1B'y'3 and x' =

y'1y'3, where y'1, y'3  (V'). Express y = y1Zy3 so

that y1  g(y'1), y3  g(y'3) and Z  g(B'). Let Z =
BBB. Then, y = y1BBBy3 and there exists the

derivation S ⇒
G y1BBBy3 ⇒G y1y3 [BBB → ],

where y1y3 = x, x  g(x').

We have completed the proof and established
Claim 2 by the principle of induction. Observe
that L(G) = L(G') follows from Claim 2. Indeed,
according to the definition of g we have g(a) = {a}

for all a  T. Thus, from Claim 2, we have for any

x  T:

S ⇒
G x if and only if S ⇒

G' x.

Consequently, L(G) = L(G') and the theorem
holds.

REFERENCES

1. Fris, I. 1968. “Grammars with Partial Ordering of

Rules”. Inform. and Control. 12:415–425.

2. Geffert, V. 1988. “Context-Free-Like Forms for the
Phrase-Structure Grammars”. In Chytil, M., Janiga,
L., Koubek, V., eds.: MFCS. Lecture Notes in
Computer Science. Springer: Berlin, Germany
324:309–317.

3. Goldstine, J., M. Kappes, C.M.R. Kintala, H. Leung,
A. Malcher, and D. Wotschke. 2002. “Descriptional
Complexity of Machines with Limited Resources”.
Journal of Universal Computer Science, 8(2):193–

234.

4. Gruska, J. 1969. “Some Classifications of Context-
Free Languages”. Information and Control. 14:152–

179.

5. Holzer, M. and M. Kutrib. 2011. “Descriptional
Complexity - An Introductory Survey: Scientific

Applications of Language Methods”. Mathematics,
Computing, Language, and Life: Frontiers in
Mathematical Linguistics and Language Theory,

Vol. 2. Imperial College Press: London, UK. 1–58.

6. Kelemenova, A. 1982. “Grammatical Complexity
of Context-Free Languages and Normal Forms of
Context-Free Grammars”. Second Czechoslovak-
Soviet Conference of Young Computer Scientists.
In: Mikulecky Bratislava, P., editor, Smolenice
Castle, November 8–12, 1982. 239–258.

7. Paun, G. 1985. “A Variant of Random Context
Grammars: Semi-Conditional Grammars”.
Theoret. Comput. Sci, 41:1–17.

8. Salomaa, A. 1973 Formal Languages. Academic

Press: New York, NY.

SUGGESTED CITATION

Oladele, R.O. and S.N. Isah. 2017. “Reduction of
Simple Semi-Conditional Grammars”. Pacific
Journal of Science and Technology. 18(1):112-
116.

Pacific Journal of Science and Technology

http://www.akamaiuniversity.us/PJST.htm
http://www.akamaiuniversity.us/PJST.htm

