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Abstract

The widely used distinction of Little and Rubin (1) about types of ran-
domness for missing data presents difficulties in its application to drop-
outs in longitudinal repeated measurement studies. In its place, a new
typology of randomness for dropouts is proposed that relies on using a
survival model for the dropout process.

In terms of a stochastic process, dropping out is a change of state.
Then, the longitudinal measures and dropout processes can be modeled
simultaneously, each conditional on the complete previous history of
both repeated measures and states. In this context, Poisson regression
is used to fit various proportional hazards models, some of which are
new, to the dropout process using the longitudinal measurements re-
sponses as time-varying covariates.

As examples of longitudinal measurement studies displaying non-
random dropout processes, a dental study of testosterone production in
rats and clinical trials for treatment of gallstones and of depression are
analyzed.
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1. Introduction

1.1 Role of Dropouts

The problem of missing observations is important in any study, but it is particu-
larly acute when repeated measurements are taken on individuals. The missing
values may occur in the response variable or in the explanatory variables or both.
In sample surveys, for example in epidemiology, nonresponse in the explanatory
variables is usually of special concern because of the cumulative effect in multiple
regression models. In panel studies, certain individuals may not be contactable at
some of the points in time (waves) so that all variables are missing there. In
experimental trials, baseline explanatory variables are generally recorded, along
with the treatment to which each individual is randomized. In such longitudinal
studies, two different missingness situations among the repeated responses can
be distinguished: an occasional response value may be missing, or the individual
may drop out so that all response values are missing after some point in time. It
is this last situation that will be examined here.

In almost all circumstances, dropouts in longitudinal studies are not simply
a special case of missing values. In contrast to the occasional missing value, drop-
ping out of a properly planned clinical trial generally requires a major decision
to leave the study completely. If dropping out can be assumed to have occurred
randomly, in the sense to be discussed below, then standard analyses can be ap-
plied that simply ignore the subsequent missing values, although with the attendant
loss of information in certain cases. Many methods are now widely available for
such unbalanced data (Lindsey (2)). However, in studies involving living beings,
it may generally safely be assumed that observations are rarely randomly missing
in the sense to be used in this paper (as opposed, for example, to test tubes acciden-
tally being dropped) and even less that dropping out occurs randomly.

It is often argued that ‘‘scientific’’ interest should focus on the longitudinal
profile averaged over dropout patterns, apparently in an attempt to determine what
might have happened if there had been no dropouts. The fundamental thesis of
this paper is that such an approach mixes up, in an uninterpretable way, two pro-
cesses that are occurring in the study: the generation of the longitudinal series of
responses and the reactions to the conditions of the study that produce dropouts.
Such marginal results, averaged over dropout patterns, will yield misleading con-
clusions if subsequently applied in any real situation where dropouts are possible.

1.2 Current Approaches

Much has been made about the distinctions among nonrandom, random (MAR),
and completely random (MCAR) missing values (Little and Rubin (1)). However,
these ideas are quite distinct from those that will be used here because they involve
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the counterfactual principle of unrecorded values. They implicitly assume that the
‘‘as if’’ situation of no dropouts is of primary importance when usually it is an
unrealistic hypothetical possibility of no real interest. These ideas are difficult, if
not impossible, to apply empirically because, by definition, it is impossible to
determine if the reason that a value is missing depends on the values of observa-
tions that were not recorded.

Many papers have been written in recent years about missing values. No
attempt will be made to review the literature here. A considerable number of these
papers have been specifically concerned with the dropout problem in longitudinal
studies. Some seek to determine if the dropouts are random in the Little and Rubin
sense (for example, Diggle (3); Ridout (4)). Others construct models for the ob-
served responses in the presence of missing data (for example, Gould (5); Murray
and Findlay (6); Heyting, Tolboom, and Essers (7); Kenward, Lesaffre, and Mo-
lenberghs (8)), while some even attempt the empirically impossible task (because
no information is available) of modeling dependence of present dropout on hypo-
thetical unobserved future values (for example, Diggle and Kenward (9); Lesaffre,
Molenberghs, and Dewulf (10); Molenberghs, Kenward, and Lesaffre (11)). For
a review, see Little (12).

A number of authors have developed models for the simultaneous analysis
of the longitudinal measurements and the time to dropout, by conditioning either
dropout on the repeated responses in a selection model, (for example, Woodbury,
Manton, and Stallard (13); Manton, Woodbury, and Stallard (14); Wu and Carroll
(15); Schluchter (16); De Gruttola and Tu (17); Tsiatis, De Gruttola and Wulfsohn
(18); Martinussen and Keiding (19)), or the repeated measures on dropping out
in a pattern mixture model (for example, Wu and Bailey (20,21); Mori, Wood-
worth, and Woolson (22); Pawitan and Self (23); Hogan and Laird (24)); for an
overview, see Hogan and Laird (25). Another approach, closely related to the
latter ones, is to model the numbers of recorded observations (Mori, Woolson,
and Woodworth (26)) instead of time. Note that making the distribution of the
observed longitudinal measures conditional on time to dropout, as in a pattern
mixture model, means conditioning what is happening in the present on a future
event because dropout occurs after the last measurement is made.

Thus, many current approaches to dropouts attempt to remedy defects in
study design (unrecorded reasons for dropout) by making unverifiable modeling
assumptions where, as Fisher (27) stated, only a post mortem is feasible. The
solution is to collect information on reasons for dropouts, not to make unverifiable
assumptions about dependence on unobserved events after dropout.

1.3 Dropout as a Survival Process

Here, I shall use survival models to study the dropout process simultaneously
with a model for the longitudinal measurements process, both conditional on the
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previous history of each subject. This procedure can efficiently use the available
information to determine whether the dropout process is random or not, in a way
to be defined below. But, in most cases, it can also provide important information
that can, in its own right, be useful in a complete analysis of the data.

For example, if a study protocol specifies that patients be withdrawn when
their blood pressure exceeds a certain level or that machines must be readjusted if
the product leaves certain tolerance limits, then the only model of the longitudinal
responses that makes sense is one that conditions on not crossing the threshold.
But, at the same time, a complementary model for the risk of reaching that thresh-
old must form an essential part of the analysis. The same reasoning will most
often still hold when the causes of dropping out are not so clearly defined at the
beginning of a study.

In the context of short series of longitudinal observations, as in panel data,
Taris (28,29) uses Markov chains to determine if dropouts are random. He consid-
ers dropouts to be nonrandom if the Markov chain is not stationary and identical
for all subgroups of individuals relevant to the question at hand. In a similar way,
we can model dropouts using survival models to study randomness, checking if
the risk of dropout changes over time and if it depends on the previous history
of the individuals.

The goal of modeling dropouts, and the interpretation of the results, will
depend on the type of longitudinal study involved. Here, I shall consider as exam-
ples a dental study of testosterone production in rats and two multicenter clinical
trials, one involving repeated counts of nausea in patients with gallstones and the
other for treatment of depression.

In summary, the approach taken here is to model, as completely and ade-
quately as possible, those responses that have been observed, as they depend on
the observed previous history of subjects, rather than to postulate hypothetical
and uncheckable models for what might have been observed if circumstances had
been otherwise.

2. Types of Dropouts

2.1 Basic Principles

2.1.1 Standard Definitions

The widely used Little and Rubin (1) distinctions among nonrandom, random,
and completely random missingness have often been distorted or misinterpreted
in the literature. They are founded on three basic ideas: (1) data are missing at
random if, given the observed data, the probability of the observed missingness
pattern does not depend on the values of the unobserved data; (2) data are observed
at random if, for every possible value of the missing data, the probability of the
observed missingness pattern, given the unobserved data, does not depend on the
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values of the observed data; and (3) the parameters for the data and for the miss-
ingness models for the complete data are distinct if knowledge of one does not
place constraints on the other’s values (Rubin (30)). In spite of their names, these
definitions do not correspond to any commonly accepted definition of randomness
but, instead, describe independence between the response mechanism of interest
and the missing data mechanism. Thus, the Little and Rubin (1) distinctions should
rather be called dependent, independent, and completely independent missingness.

Such ideas originally arose in the context of cross-sectional sample surveys.
In such a context, they may often be useful to model the missing responses of
people whom it was not possible to contact as compared to those who refused to
participate. They are less clearly appropriate in other cases, such as for refusals
to specific questions in such surveys; here, for example, for questions of opinion,
the only possible response is ‘‘missing,’’ whereas, for income, a relevant objective
value does exist. In these cases of refusal, assuming any other form for the ‘‘unob-
served’’ data, including imputing what would have been the response, can bias
the results. Studies of sample survey interviewing procedures have shown that
such individuals are usually very different from those who agree to reply. Such
people generally have good reasons for not responding. However, no empirical
information is generally available about these differences.

2.1.2 Dropouts

In a longitudinal measures study, a dropout, in the terminology of stochastic pro-
cesses, corresponds to a change of state of the subject. In cases of interest, this
generally occurs because of the previous history of the subject within the study
(for example, lack of patient improvement or side effects) or because a response
is no longer possible (for example, refusal or death). More occasionally, with-
drawal may be because subsequent responses will no longer be relevant to the
phenomenon under study due to changing circumstances (for example, patient
recovery, moving away, or contracting an unrelated disease). Averaging over pro-
files with such different dropout patterns (and reasons) can have little meaning
in such circumstances. This will be especially true in a clinical trial where non-
compliance and dropout are strictly controlled and hence not representative of
any subsequent general use of a medication.

It is difficult to conceive of a situation in which recording would stop, know-
ingly or unknowingly, simply because the next response is expected to be extreme
(but still meaningful) without basing the decision on the subject’s previous history.
Thus, in most situations, it does not make sense to require the dropout and longitu-
dinal measures mechanisms to be independent: recording each repeated measure
will be dependent on not previously having dropped out while the risk of dropping
out can only depend empirically on the (series of) repeated measures, and covari-
ates, already recorded. Present events do not depend on hypothetical future events
except through prediction from knowledge of previous events.



ORDER                        REPRINTS

508 Lindsey

Dropouts in longitudinal measurements studies have often been associated
with censoring in survival data. However, the situations are quite different. In the
latter case, it is important that the censoring mechanism not depend on the failure
mechanism, for example by subjects being removed from the study because of a
high risk of failure (Kalbfleisch and Prentice (31), Ch. 5). The principal case in
which this can be a real problem in longitudinal repeated measures studies is if
only the final response is to be analyzed (Heyting et al. (7)) instead of modeling
the complete longitudinal series. Of course, due to dependence among responses
on an individual, earlier responses will contain information about this final re-
sponse that is lost if they are ignored.

2.2 Problems with Standard Definitions

In this light, Rubin’s (30) definitions pose several major problems in the context
of dropouts in longitudinal data, including the following:

1. In many situations where subjects drop out, they are no longer in a posi-
tion to provide a response so that the only possible value of the missing
data is ‘‘missing.’’

2. Even in those cases where a further response would be possible after
dropout, stating that the probability of dropout depends on its hypotheti-
cal value means conditioning on the future because dropping out occurs
before that response would have been recorded. If a patient is feeling
too ill to continue visits, the model should condition on this information,
not on the hypothetical value that otherwise would have been recorded.

In almost all cases of interest, unrecorded responses after dropout (where they
are possible) will, by definition, be qualitatively different from those of subjects
who have not dropped out and cannot be directly compared with them (except in
the rare case of random dropout, in the sense used here). The subjects have
changed state so that the process generating the longitudinal measurements (ob-
served or not) is different (although this cannot be checked empirically unless
subsequent observations are available).

Some have argued that conditioning on the unobserved response values is
similar to conditioning on an unobserved random effect. However, the response
could have been observed whereas the random effect never can be. Indeed, the
random effect disappears from the model actually used to construct the likelihood
function, its role being to generate dependencies among the observed responses
on a subject (Lindsey (2, pp. 55–61)). In the same way, a model claiming to
condition on the unobserved response makes strong implicit assumptions in order
to produce a prediction that must, in fact, be implicitly conditional on the previous
observed values. In empirical implementation, any such model, thus, must actually



ORDER                        REPRINTS

Dropouts in Longitudinal Studies: Definitions and Models 509

assume MAR. It would seem preferable to condition directly on the observables
rather than indirectly in this obscure way.

For frequentist inference, the MAR dropout process creates major problems.
It is widely stated that frequentist likelihood inference is possible in such a case; it
has even been claimed that standard errors obtained from the observed information
matrix are valid (for example, Kenward and Molenberghs (32,33)). However, the
dropout process is acting as a stopping rule that depends on previous observations,
as in sequential designs. The dropout process determines how much information
is collected, and this depends on what information was already collected. As for
sequential designs, such a stopping rule cannot be ignored in making frequentist
inferences. Such problems do not arise in direct likelihood and Bayesian inference.

Thus, we must accept the fact that, in most cases where dropouts are present,
the only interpretable model will be one involving the response profiles over time
conditional on not (yet) dropping out. In this sense, only modeling the complete
observed series of longitudinal responses prior to dropout is ‘‘unbiased,’’ but it
needs to be complemented by a model for dropping out. On the other hand, forcing
subjects to remain in a study when they want to or should drop out will bias the
results, as will theoretical attempts to guess (impute) what might have been the
response after dropout, because the dropouts are different than those who would
stay in the study anyway.

2.3 Defining the Dropout Process

Let us then consider how to model the dropout process using an accepted definition
of randomness (not that of Rubin (30)) and without involving the hypothetical
responses after dropout. First note that all subjects who do not drop out are cen-
sored in terms of the dropout process. This is uninformative because, in standard
survival analysis terminology, it is Type I censoring, determined by the study
design.

2.3.1 Factors Affecting Dropout

In any longitudinal study, risk of dropout can be modeled as depending on a
number of observable factors. The first to consider is time. If risk, for all subjects,
can be shown not to vary in time, then one may postulate a Poisson process,
implying that dropping out is random over the period of the study. If it varies
over time in the same way for all subjects (for example, because of aging, unwill-
ingness to continue participation, and so on), dropouts are not random but the
dropout process is ignorable because it is not connected to the phenomenon under
study, whether the longitudinal response, treatment, or relevant covariates.

If the risk of dropout is constant over time within some subgroups deter-
mined at the beginning of the study (treatment and/or baseline covariates), but
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different among such subgroups, then it can be taken to be random within these
subgroups. (For example, those with complete series are a random subsample from
the sample subgroup; see Heyting et al. (7).) However, if a random sample from
some population was chosen at the beginning of the study, it is becoming less
and less representative over time because of the differential rates of dropout in
the different subgroups. On the other hand, in an experimental trial where subjects
are randomized to treatments, differential random dropout among treatments may
not cause too much concern, at least for a treatment comparison at some final
endpoint. Thus, this type of dropout process is not random for the study as a whole
because of the dependence on these subgroups. In almost any longitudinal context,
this dropping out is not ignorable.

In summary, things will generally not be simple. In addition to time, the risk
of dropout may depend on treatment, baseline covariates, time-varying covariates,
and the values of the longitudinal response variable already recorded. In all of
these cases, the dropout process is nonrandom. In randomized experimental trials,
if the risk of dropping out depends only on treatment, then causal conclusions
can be made about it. If it depends on time-varying covariates or on previously
recorded responses, conclusions may be more difficult to draw because these will
generally be intermediate, unrandomized variables, depending on previous values,
on baseline covariates, or on treatment.

2.3.2 Types of Dropout Mechanisms

We therefore find three distinct dropout processes:

1. If risk can adequately be described by the same homogeneous Poisson
process for all subjects, dropout is random.

2. If risk varies over time, or depends on irrelevant factors external to the
study, in the same way for all subjects, the process is ignorably non-
random.

3. If risk depends on any of the variables relevant to the process under
study, including those used in the model for the longitudinal measures
process and any specifically collected as reasons for dropping out, drop-
out is nonignorably nonrandom.

Naturally, extreme care must be taken when concluding that the dropout process
is random or ignorable because the appropriate dependence on the available vari-
ables may not have been discovered.

If the dropout process is nonignorable (nonrandom), the subjects change state
and (possible) future unrecorded longitudinal responses will generally be irrele-
vant to the repeated measures process before change of state (dropout). In the
presence of nonignorable dropouts, asking what outcomes would have been ob-
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served if all subjects had completed the study will have no meaning in most situa-
tions.

This contrasts with the intention-to-treat situation where treatment differ-
ences measure the social phenomenon of assigning medication, not the biological
process of taking it. After dropout, we do not have observations over which to
average.

3. Modeling the Dropout Process

3.1 Risk of Dropout

3.1.1 Proportional Hazards Models

To model the dropout process using these definitions, we require a flexible proce-
dure for survival data that can easily accommodate time-varying covariates. Lind-
sey (34) has shown how parametric proportional hazards models for failure time
data can simply be fitted as log linear models, that is, by Poisson regression, a
procedure that is now available in most major statistical packages such as Genstat,
GLIM, Lisp-Stat, R, S-Plus, SAS, or Stata. In our context, the basic model has
the form

log[λ(t; u)] 5 β0 1
î

β igi(t) 1
ĵ

γ j xj 1
k̂

ηkzkt

where u 5 (b, g, h); λ[ is the risk or hazard function for dropping out, xj are
the baseline covariates and treatments; zkt are time-varying covariates and (one
or more previous) longitudinal measures responses; and t indexes time. Here, each
gi(t) is some completely known function of time. Common choices include t, t 2,
1/t, 1/t 2, log(t), and log2(t). Because the series of observations on each individual
is usually short, at most two will generally be necessary in a given model. As
well as monotone hazard functions, both unimodal and bathtub shapes are possible
in this family. Interactions between time and the other variables can also be in-
cluded; without them, the models are in the family of proportional hazards or
multiplicative intensities.

Several members of this family are well known:

1. When there is no function of time, we have the exponential distribution,
that is, the homogeneous Poisson process.

2. when the only function in time is
g1(t) 5 log(t), we have the Weibull distribution,
g1(t) 5 t, we have the extreme value distribution,
A factor variable taking a different level for each time point, we have
the Cox (35) model.

For no other special case of the model is a simple density available (Lindsey (36)).
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3.1.2 Integrated Hazard

In constructing models, we require the following integrated hazard (I ignore the
covariates for clarity):

Λ(t; β) 5 #
t

0
λ(µ; β)du

5 #
t

0
exp3β0 1

î

β igi(u)4du

For other functions of t than those listed above, this is intractable. However, for
some of them, well-known numerical procedures are available. Thus, for example,
for g1(t) 5 t and g2(t) 5 t 2, we obtain the normal integral; for g1(t) 5 log(t) and
g2(t) 5 log2(t), the log normal integral; for g1(t) 5 t and g2(t) 5 log(t), the gamma
integral; and for g1(t) 5 t and g2(t) 5 1/t, the inverse Gaussian integral. However,
note that these are integrated hazards, not cumulative probabilities. When this
integral, from zero to infinity, is finite, the survival distribution is ‘‘defective’’ in
that there is a finite probability of never having the event. In our context, this
means that some individuals will never drop out, a useful characteristic of these
models.

Consider in more detail, for example, the model where g1(t) 5 t and
g2(t) 5 t 2, with an integral that would correspond to a normal density. Let

λ(t; β1, β2) 5 exp[β1t 1 β2t 2 1 β1/(4β2) 1 log(2β2/π)/2]

the canonical form of the normal density [with β0 5 β1/(4β2) 1 log(2β2/π)/2],
but here taken as a hazard or risk function. Then, the integrated hazard is the
integral of this and the corresponding survivor function is

S(t; β1, β2) 5 exp 32#
t

0
λ(u; β1, β2)du4

Notice that, because the integral to infinity is finite, there is nonzero probability
of surviving forever, that is, not dropping out. The corresponding density is

f(t; β1, β2) 5 λ(t; β1, β2)exp32#
t

0
λ(u; β1, β2)du4

This belongs to the class of nonstandard parametric proportional hazards or multi-
plicative intensities models that will be used here.

3.2 Likelihood Function

3.2.1 Construction

With this approach, the model for dropouts is simple to implement using general-
ized linear models in any of the software mentioned above. I assume that dropping
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out occurs sometime after the last recorded response, and prior to the time when
the next response would have been recorded. Then, the dropout response for the
Poisson regression is an indicator variable, say d, of change of state consisting
of a series of 0’s at all time points, sometime after when each longitudinal measure
is recorded, except for that at dropping out, after the last recorded response, which
is a 1. Subjects who do not drop out are uninformatively censored; they are han-
dled automatically by a series of 0’s with no 1 at the end. All of the variables in
the longitudinal measures study, including the responses up to that time, form
part of the previous history of a subject and can be used as explanatory variables,
if necessary. If the times between observations are irregular, the logarithm of these
intervals, ∆ t, is used as an offset. This will often be fairly crude because the exact
time of dropping out may not be recorded; sometimes, even the timing of the first
missing longitudinal measurement is unknown.

Now let t indicate the time of recording a longitudinal measurement. The
log likelihood for this dropout model for one subject is (Lindsey (34))

log[FD(β; d)] 5 ^
n

t51

dt1
log[λ(t1|^ t; β)∆ t] 2 ^

n

t51

λ(t1|^ t; β)∆ t

where n longitudinal measurements are recorded; dt1
is the dropout indicator vari-

able for change of state of the individual, with the 1 indicating that it is recorded
after the longitudinal measure at time t; ^ t is the relevant history (covariates and
repeated measures responses) up to, but not including, time t1; and ∆ t is the inter-
val between observations.

Then, the complete likelihood function for one subject based on the joint
distribution of the longitudinal measurements, conditional on not having dropped
out, that is not having changed state, and on the dropout process is

L(a, b; y, d) 5 LRM(a; y|d 5 0)LD(b; d)

5 p
n

t51

f(yt|^ t2, dt2 5 0; a)[λ(t1|^t; β)∆ t]dt1exp[2λ(t1|^ t; β)∆ t] (1)

where yt is the observed longitudinal measures response, recorded before dt1
oc-

curs, with conditional density function, f( ), and parameters, a. Because of the
conditioning, the complete likelihood function factors into the two separate likeli-
hood functions, the repeated measurements likelihood, LRM, and the dropout likeli-
hood, LD, so that, with direct likelihood and Bayesian methods, they can always
be studied separately (unless, for some unusual reason, they have common param-
eters).

3.2.2 Interdependence Between Processes

As time goes by, the dropout process is imposing a selection on those individuals
still able to supply repeated measurements. This implies that the form of the distri-
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bution of longitudinal responses may be changing over time. Under certain very
strict mathematical conditions (Woodbury et al. (13); Manton et al. (14); Martinus-
sen and Keiding (19); Yashin and Manton (37)) on both processes in the model,
the distribution of the longitudinal measure, f(yt|^ t2, dt2 5 0; a), at successive
time points can be made to adjust automatically to this selection process. The
greater flexibility of allowing the adjustment to take place through dependence
on the previous history of each individual, ^ t2, seems preferable. Thus, any appro-
priate standard longitudinal repeated measures model can be used to analyze, con-
ditionally, all observed responses up to dropout. These aspects of the complete
model will not be considered further here. It is rather the second of the two factors
in the likelihood of Eq. (1) that is of interest.

On the other hand, although the likelihood factors, the longitudinal measure-
ment process, Y, and the dropout process, D, are, in general, not even conditionally
independent so that their joint multivariate distribution does not factor into parts
containing each separately. This contrasts with the simpler situation assumed in
the literature on joint modeling mentioned in the introduction where either
f(y)f(d|y), a selection model, or f(y|d)f(d), a pattern mixture model, is used. Thus,
if the marginal distribution of the longitudinal responses is required here, it can
only be obtained by integrating Eq. (1) over possible dropout times; this will
usually be complicated because ^ t will generally contain these responses, either
in the dropout or the repeated measures model or both. This problem will also
not be considered further here, the reason being that—contrary to frequent state-
ments in the missing data literature—this marginal distribution generally repre-
sents the ‘‘as if’’ situation of no dropouts corresponding to no real phenomenon
of interest.

Thus, in the complete analysis of any study, the two processes must both
be considered. For example, in a clinical trial, if either the profile of longitudinal
responses or the risk of dropout, or both, depend on the treatment, then, from the
randomization, we can conclude that there is evidence of a causal treatment effect,
although the importance of each must be suitably weighed. In longitudinal re-
peated measurements studies with dropouts, the conclusions must necessarily be
rather complex.

4. Examples

The inference criterion that I shall use for comparing the models in the examples
below will be their ability to predict the observed data, that is how probable they
make the complete observed set of dropout sequences, including the censored
ones. In other words, models will be compared directly through their minimized
22 log likelihood (Lindsey (38,39)). When the numbers of parameters in models
differ, they will be penalized by adding twice the number of estimated parameters,
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the Akaike information criterion (AIC) (see Akaike (40); Lindsey and Jones (41)).
Smaller values indicate more preferable models.

In the following examples, I have considered all of the functions of time
mentioned above, but only present results for those that proved most adequate for
the given data set. For simplicity, I only look at dependence of dropout risk on
the immediately previous observed value of the longitudinal response. However,
if risk depends on the rate of change of these responses, as it well may, then two
or more previous responses would need to be included. Thus, I am almost certainly
underestimating the possibility of nonignorable dropouts.

4.1 Testosterone Production in Rats

Dentists interested in the therapeutic use of hormones set up an experiment to
investigate the effect of inhibition of the production of testosterone on the cranio-
facial growth of male Wistar rats (Verbeke and Lesaffre (42)). The rats were
randomized either to control or to low or high dose of decapeptyl, an inhibitor
of testosterone production, with, respectively, 15, 18, and 17 in each group. Treat-
ment was started when the rats were 45 days old, with 7 measurements being made
every 10 days, starting when they were 50 days old. Each rat was anesthetized in
order to X-ray its skull and measurements were made between various pairs of
points on the resulting pictures. Unfortunately, many rats did not survive anesthe-
sia, as can be seen in Table 1 (we do not know how many rats died at the last
measurement).

In such an experimental context, one would not expect either the treatment
or previous measurements to affect dropout. As well, the dentists were convinced
that the risk of dying should not change over time. The first expectations were
confirmed by the data, whereas the last was not: risk varied over time, in the same
way for all treatment groups and independently of previous measurements, as can
be seen in Table 2. Although the highest proportion of rats died in the control
and the lowest in the high dose group, there is no indication of treatment influenc-

Table 1. Numbers of Rats Dying at Different Ages in
the Three Treatment Groups

Age Control Low dose High dose

50 2 1 1
60 0 2 1
70 3 0 2
80 3 3 3
90 3 2 0
100 0 2 0
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Table 2. AICs for Several Models for Dropouts in the Rat
Experiment

Model AIC Parameters

Null 90.5 1
Treatment 91.2 3
Response 91.2 2
Time 91.5 2
Time 1 Time2 89.0 3
Time 1 Time2 1 Treatment 89.8 5
(Time 1 Time2) * Treatment 92.3 9
Time 1 Time2 1 Response 90.0 4
(Time 1 Time2) * Response 90.1 6

ing mortality. Thus, we may conclude that the dropout process is nonrandom but
that it is ignorable because it does not depend on the process under study.

For these data, the risk functions have the form of a normal density. The
risk curve (for all treatment groups) is plotted in Figure 1. The nonrandomness
might possibly arise from the weaker rats being eliminated over the first four or
five anesthetics or by a learning process whereby, over time, the investigators

Figure 1. Risk curve for dropout from the rat experiment.
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improved their techniques for handling the rats. In their calculation of efficient
sample designs, Verbeke and Lesaffre (42) ignore this changing risk of dropout.

4.2 Nausea with Gallstones

Thall and Lachin (43) describe a 10-year, multicenter, double-blinded clinical trial
to study the use of natural bile acid, chenodeoxycholic acid, to dissolve cholesterol
gallstones. A total of 916 patients were randomized to be treated for up to 2 years
each with either high or low dose or placebo. Patients were scheduled to return
for clinic visits at 1, 2, 3, 6, 9, and 12 months, at which times counts of episodes
of nausea were recorded. However, the patients actually visited at rather erratic
times; these are used below. Only those observations for the first year (or more
exactly, including the first visit after 58 weeks) for patients with floating gallstones
in the high dose and placebo groups are given by Thall and Lachin, for a total
of 111 patients (two in the high dose group dropped out before the first visit).
Several reasons for exit from the study are given: dropout, withdrawal, hepatoxi-
city, and cholecystectomy, for a total of 16 patients (not including the two who
dropped out early), one-half in each group. Because of the small numbers of each,
it is not possible to consider these reasons separately in the analysis.

The results of fitting the dropout models to these data are shown in Table
3. There is little or no indication of a (constant over time) difference in the risk
of dropout with treatment or response (count of nausea spells). However, it does
depend on time (and its square). Because of the irregularity of the visits, it is not
feasible to fit a Cox model to so few events. Introducing an interaction between
time and treatment improves the model, whereas that with response does not.
Again, the risk functions have the form of a normal density.

In the placebo group, the risk of dropout is high at the beginning, later reduc-
ing to about zero; on the other hand, in the high dose group, it shows a high level
only between about weeks 15 and 40. The curves are plotted in Figure 2 where
the normal shapes are clear. (The risk does not depend on previous response.)

Table 3. AICs for Several Models for Dropouts in the Gallstone
Clinical Trial

Model AIC Parameters

Null 136.8 1
Treatment 135.5 2
Response 138.4 2
Time 124.2 2
Time 1 Time2 121.5 3
(Time 1 Time2) * Treatment 115.5 6
(Time 1 Time2) * Response 121.9 6
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Figure 2. Risk curves for dropout in the two treatment groups for the gallstone trial.

Because of randomization of treatments, the difference between the curves can
be interpreted causally. Note, however, that a satisfactory model would require
a distinction among the reasons for dropping out; here this is not really possible
because of the small number of patients leaving for each reason.

4.3 Antidepressant

Several large multicenter longitudinal clinical trials were conducted to test a com-
pound belonging to a new class of antidepressants (Heyting et al. (7)). These
involved a randomized, double-blind comparison of three compounds, including
placebo, in parallel groups of outpatients with primary depression. The study
groups were compared with respect both to efficacy and to unwanted effects. In
the trial considered here, with eight centers, the target number of patients per
center was 60, equally divided over the 3 treatment groups. The protocol stipulated
an initial washout period during which the suitability of the patients for inclusion
in the study was to be assessed according to inclusion and exclusion criteria. The
washout period was followed by a treatment period of 6 weeks, during which
study medication was given on a flexible basis, according to the patient’s response.
In the first treatment week, the dosage of the study medication was to be increased
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Table 4. AICs for Several Models for Dropouts in the Antidepressant Clinical Trial

Model AIC Parameters

Null 543.6 1
Treatment 545.3 3
Response 533.3 2
Time 542.3 2
Time 1 Time2 528.5 3
Time 1 Time2 1 Treatment 530.3 5
Time 1 Time2 1 Response 519.2 4
Time 1 Time2 1 Response 1 ConcMed 517.6 5
Time 1 Time2 1 Response 1 ConcMed 1 FamHist 516.8 6
Time 1 Time2 1 Response 1 ConcMed 1 FamHist 1 Centre 513.9 13

ConcMed-binary indicator whether receiving concurrent medicine or not; FamHist-family history (number of
psychiatric cases in family of the patient).

gradually. On the last day of the washout period and at the end of subsequent
treatment weeks, the protocol required various assessments to be performed, of
which the HAMD score is used as the response here.

The clinical and demographic background information collected included
sex, age, occupation level, illness duration, diagnosis, family history, previous
medication, and concurrent medication. Although reasons for dropout are avail-
able, these will not be considered here for lack of space.

Full response data are only available for weeks 0, 1, 2, and 4. By this time,
36.4% had dropped out. The results of fitting the dropout models are shown in
Table 4. There is no indication of a direct dependence of dropout on treatment.
However, it does depend on response, which, in turn, depends on treatment: risk
of dropout is greater with higher scores. As in the previous examples, the hazard
function has the form of a normal density. Of the covariates, dropout depends on
whether concurrent medicine was being taken, the risk being lower if it was, and
on family history, being greater with more psychiatric cases in the family. Drop-
ping out also depends on the trial center, with higher rates at centers 2, 4, 5, and 6.

As in the previous example, we must conclude that dropping out is nonignor-
ably nonrandom, but here for quite different reasons. Because of the complex
dependence on various covariates, including previous response, it is difficult to
plot a typical hazard curve.

5. Discussion

5.1 Two Philosophies of Missing Data

The approach presented here is based on the principle that the dropout process
should always be modeled, and that it has strategic interest in its own right. On
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the other hand, the repeated measurements generally only have meaning condi-
tional on not dropping out. In contrast, the philosophy of those following the Little
and Rubin (1) school for missing data, as applied to dropouts, is to model the
repeated measurements marginally, as if no one had dropped out. For them, the
goal is to determine when one can avoid modelling the dropout process. The ignor-
ability criteria in the two cases are very different; those presented here are much
stricter and will rarely be fulfilled.

The Little and Rubin (1) distinctions deal essentially with questions of infer-
ence about the ‘‘complete’’ data distribution, not the appropriateness of models
to a given context. Their nonrandom (that is nonindependent) missingness means
that this process must be explicitly modelled for any inferences to be possible.
With their random (that is independent of unobserved data) missingness, direct
likelihood (as used above) and Bayesian inferences are possible while ignoring
the missing data process. Only when the data are missing completely at random
(that is, independent of both observed and unobserved data) are frequentist infer-
ences possible without this process.

These criteria are widely misunderstood in the literature; frequentist infer-
ences, even based on a likelihood function, and including the usual interpretation
of standard errors, are impossible without modeling the dropout process, except
in the third case. The probability statements they make rely on the sample space
being defined in such a way that it includes anything that might possibly have
been observed, thus excluding the second case; strictly speaking, no frequentist
inferences are possible unless the nonindependent missing data process is mod-
eled, even when there are no missing data among the observations that one had
originally planned to record (Lindsey (39, p. 316)). In conclusion, these distinc-
tions provide no guidelines as to what are the appropriate models for the given
question under study.

The crucial assumptions in some of these models, those that make the proba-
bility of dropout depend on the unobserved future responses, are that the joint
distribution of observed responses does not depend on whether or not a subject
is about to drop out and that this same joint distribution would continue to hold
if further observations had been possible (Diggle and Kenward (9)). These are
almost always unrealistic for several reasons. One may expect at least some
aspects of the previous history of those about to drop out to differ from those
remaining; otherwise, the dropout process is not predictable. Then, once an indi-
vidual has dropped out, a change of state has occurred so that the distribution of
unrecorded longitudinal responses, where considering them makes sense, should
be different. Both of these points have been used here in constructing the models;
the latter will be discussed further below.

If the first assumption takes the extreme form that the distribution of longitu-
dinal responses has already changed well before dropout, then one can argue for
the complete factorization as a pattern mixture model, f(y|d)f(d), mentioned
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above, but from what time point on? In addition, this poses the problem of creating
a stratification among the present distributions of longitudinal responses based on
a criterion that can only be observed in the future. As well, those in the literature
who have advocated this approach integrate over the hypothetical unrecorded fu-
ture observations after dropout to obtain the marginal distribution, as if dropping
out had not occurred; see Little (12) or Hogan and Laird (25).

5.2 Dropouts in Clinical Trials

The common dictum that one should avoid missing values wherever possible by
taking energetic steps to retain subjects in a study is not as obvious as it is often
thought to be. The advice to have no dropouts is not a good guideline if they would
be nonrandom in the sense defined here, because it generally imposes unrealistic
conditions on the subjects, hence biasing the final conclusions. Either only very
untypical subjects, believed not to be prone to dropout, are allowed to enter the
trial, or some subjects are forced to remain in the trial against their will and will
react differently than the others.

Instead, the dropout process(es), under suitably prespecified conditions,
should be accepted as an integral part of the phenomenon under study (although
certainly not encouraged!) and modeled as such. Shih and Quan (44) take a similar
position in the context of testing the endpoint of a clinical trial; they suggest a
joint test for treatment difference in dropping out and in final response conditional
on not dropping out.

In any study, the time of dropout should be recorded as accurately as possi-
ble, especially if the times between the longitudinal measures are widely spaced.
Different reasons for dropout must be recorded and, where relevant, modeled as
distinct risk processes. As for any failure process, all covariates that might be
useful in predicting dropouts should be recorded, even if they are not directly
relevant to the longitudinal measures process itself. Another possibility would be
to have stricter entrance requirements at the beginning of a study so that individu-
als likely to drop out do not participate in the first place. In the context of the
modeling strategies developed here, this provides no advantage and has at least
two disadvantages. Less information is collected, especially about the dropout
process, and the conclusions are less widely generalizable.

When using the models presented here, great care must be taken in conclud-
ing that the dropout process is random, in the sense used in this paper. If the risk
of dropout does not appear to depend on time, it may simply be that the appropriate
function of time has not been found, although the semiparametric Cox model may
cover this possibility. In the same way, the conclusion that the process is ignorably
nonrandom must be made cautiously because the appropriate dependence on the
observed longitudinal measurements responses and covariates may not have ben
discovered.
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5.3 Extensions

Several extensions to this dropout model are possible and may be useful in certain
circumstances. However, except for the first mentioned below, they usually re-
quire a relatively large sample size in order to be estimable.

1. If software for nonlinear Poisson regression is available, any risk func-
tion can be fitted, not just those in the proportional hazards family.

2. If there are several reasons for dropping out, competing risks procedures
may be appropriate, although with the attendant difficulties that they
entail.

3. The above models include ‘‘defective’’ survival curves that allow for
a (latent) subgroup of the population (among those individuals with
complete observations) that is thought not to be susceptible to dropping
out. However, in certain situations, a finite mixture model may be neces-
sary in order to model such a subgroup explicitly. Taris (28) uses a
Markov chain mixture model in such a context.

4. If the longitudinal measures continue to be recorded after change to the
‘‘dropout’’ state, for example when a treatment is abandoned but fol-
lowup continues (Hogan and Laird (45)), the likelihood function (1) for
one individual becomes

L(a, b; y, d) 5

p
n

t51

f (yt|^ t2, dt2; a){[λ(t1|^t; β) ∆ t]dt1 exp[2λ(t1|^ t; β)∆ t]}δ

where δ is an indicator variable, one before the change and zero after;
and the state indicator, dt1, retains the value one after the ‘‘dropout’’
time. The model for the dropout process is identical to that given above.
However, the form of f(yt|^ t2, dt2; a) may differ before and after
dropout.

5. This can be further generalized to event histories (Lindsey (2, Ch. 10))
with an alternation between two states or the possibility of several states
so that dt1

can take on several values. Different risk models will gener-
ally be required for each state and again the form of f(yt|^ t2, dt2; α)
may be substantially different, depending on the state, that is on the
value of dt2. One application would be to noncompliance in clinical
trials.

In the light of these extensions, many of the procedures discussed here may
sometimes be directly applicable to certain types of missing responses within se-
ries of longitudinal measures. Thus, the typology of nonrandomness might still
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apply so that survival methods could be used to model the missingness process,
but now as a series of repeated events. If missing values are not isolated but
occur in sequences together, the alternation of two risk processes, stopping and
beginning again, could be modeled, although only the former could be made to
depend on the longitudinal measures responses.

5.4 Drawing Conclusions

Statisticians often look for too simple an answer to the questions being studied.
When there are few dropouts in a longitudinal study, they will contain little infor-
mation and conclusions will depend primarily on the repeated measurements
model. However, when many dropouts occur, the model for them may contribute
the essential information, dominating the conclusions. Thus, both must be consid-
ered.

For example, in a clinical trial, one unique endpoint for treatment difference
is commonly examined. However, in the context of longitudinal measurements,
things are usually more complex. Some patients may withdraw because they are
cured and others because they suffer side effects. These must be distinguished in
any dropout model. (For an example, see Lindsey, 1999, pp. 387–389.) Then,
there should be three types of conclusions: treatment differences for the probabil-
ity of cure and for the side effects, as well as differences among the profiles of
the repeated responses of those not yet dropping out. Note that all can be causal
because they directly depend on randomization. Then, the repeated measures re-
sponse profiles might show no differences although one treatment is clearly supe-
rior because of more cures or fewer side effects. On the other hand, if one
treatment has a superior profile but inferior record of cures or side effects, an
example of patient-treatment interaction, the relative importance of these would
have to be interpreted, and weighed, according to nonstatistical medical criteria.
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